Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор электролитический, очистка

    Хлор, Электролитический хлор содержит примесь кислорода, азота, окиси углерода, двуокиси углерода и хлористого водорода. Эти примеси обычно не мешают при работах по органическому синтезу. Для очистки от примесей хлор сжижают в сосуде, охлаждаемом смесью твердой углекислоты и спирта, а затем снова испаряют (т. кип.— 34,6°) и вводят очищенный хлор в реакцию. [c.20]

    В случае необходимости получения очень чистого перхлората аммония хлорную кислоту подвергают электролитической очистке от ионов хлора и. дополнительной отгонке хлора в виде НС1. [c.103]


    Обеззараживание очищенной сточной воды при применении вместо жидкого хлора электролитического гипохлорита натрия осуществляется в электролизерах ЭН-100 на очистных станциях с пропускной способностью до 50 тыс. м /сутки. Обеззараживание с применением жидкого хлора осуществляется на очистных станциях независимо от их пропускной способности. На станциях очистки пропускной способностью до 50 ООО м /сутки при соответствующем обосновании допускается применять аэробную стабилизацию как избыточного активно- го ила, так и смеси его с осадком из первичных отстойников. [c.429]

    Хлор. Электролитический хлор содержит кислород, азот, окись углерода, углекислый газ, хлористый водород и влагу. Для очистки от этих примесей, часто не мешающих при органических работах, жидкий хлор испаряют и конденсируют в приемнике, охлаждаемом смесью эфир — углекислота. Точка кипения хлора около —34°. Опуская сосуд с хлором в ледяную воду, получают равномерный ток чистого хлора. Для высушивания применяют серную кислоту. [c.177]

    Для глубокой очистки бензола предложены также следующие способы очистка хлористым алюминием, хлором, гипохлоритом и фтористым водородом электролитическая очистка парофазная очистка с различными активированными контактами очистка солями ртути и др. [52]. Однако они не нашли промышлен юго применения. [c.129]

    Подземный рассол, получаемый в рассольных скважинах, перекачивают из специальных сборников на очистку. Твердую товарную соль хранят на складе соли, где ее растворяют и рассол также подают на очистку. Из цеха электролиза электролитический щелок перекачивают в цех выпарки и в виде 42—50% -ного раствора передают на склад. Влажный хлор из электролизеров поступает в отделение сушки и затем компрессорами перекачивается цехам-потребителям. Водород, являющийся побочным продуктом процесса, после охлаждения водой подается потребителям. Постоянный ток для электролиза подводят к электролизерам с преобразовательной подстанции, расположенной на территории предприятия. Карие. 21.7 приведена схема подобного электрохимического производства. [c.349]

    Процесс получения хлора методом с твердым катодом включает следующие производственные стадии приготовление рассола, его очистка, электролиз, сушка хлора и водорода, выпарка электролитической щелочи. [c.171]

    Металлокерамическое производство бе -р и л л ИЯ [7]. Технологический процесс начинается со стадии измельчения слитков бериллия, полученных вакуумной плавкой, или электролитических чешуек. Чешуйки измельчают в шаровой мельнице мокрого помола. Затем порошок обрабатывают щавелевой кислотой для извлечения примеси хлора и хлоридов (об этом говорилось выше в связи с очисткой металла). Слитки переводят в стружку, которую затем превращают в порошок в дисковых истирателях, облицованных бериллием и работающих в атмосфере аргона. На следующей стадии процесса порошок прессуют. При холодном прессовании требуется давление 8—12 т/см с последующим спеканием при температуре, близкой к плавлению бериллия (1100—1200°). Более прогрессивный метод — горячее прессование, которое осуществимо в широком диапазоне температур (500—1100°) при 510° требуется давление 3,94 т/см , при 1100° достаточно 5—10 кг/см . [c.218]


    Охлаждение электролитического хлора может осуществляться двумя методами охлаждением путем смешения с водой (см. рис. 3.50) и охлаждением через поверхности теплообмена. При охлаждении по первому методу хлор направляют в контактные холодильники смешения. Горячий хлоргаз подается в нижнюю часть башни и отводится из нее сверху. При использовании этого метода достигаются хорошее охлаждение и очистка хлора от различных примесей, однако значительное количество вытекающей из башни воды, насыщенной хлором, требует дополнительных затрат на ее очистку. [c.120]

    Электролитический водород очищают от хлора промывкой в насадочных колоннах 19 и 20 растворами гидроксида и тиосульфата натрия и передают в контактный аппарат 22 с катализатором для очистки от кислорода. Очищенный водород охлаждают п направляют потребителю. [c.152]

    Такой метод предусматривает получение хлорной кислоты электрохимическим окислением НС1 или хлора в электролите из хлорной кислоты. Получаемая кислота может быть загрязнена ионами хлора и при использовании для производства очень чистого перхлората аммония должна быть очищена электролитически или отгонкой примесей в виде H I. При очистке хлорной кислоты электролитически [c.448]

    Для электрохимической очистки сточные воды смешивают с морской водой в соотношении 3 1 и направляют в расположенные параллельно электролитические ячейки, снабженные графитовыми анодами и чугунными решетчатыми катодами. При прохождении тока в анодном пространстве образуется хлор, а в катодном — гидроксид натрия и водород. Выделяющийся активный хлор уничтожает бактерии. Затраты электроэнергии сравнительно невелики и составляют 0,4 кВт-ч/м сточных вод. Завершающим этапом третичной обработки сточных вод является стерилизация-уничтожение бактерий путем хлорирования (хлор и гипохлориты), озонирования, ультрафиолетового облучения или электролиза (в последнем случае используется бактерицидное действие ионов серебра). [c.195]

    Ионитовые мембраны применяют главным образом для электродиализа. Их используют для разделения электролитов и неэлектролитов, концентрирования растворов, выделения ионов из раствора, разделения продуктов электролиза в электролитических ячейках. Основное применение ионитовых мембран — обессоливание (опреснение) сильно минерализованных вод, в том числе морской воды. Электродиализ и электролиз в камерах с ионитовыми мембранами применяют также в химической промышленности (например, для выделения минеральных солей из морской воды, электролитического производства едкого натра и хлора), в пищевой и фармацевтической промышленностях (например, для удаления избыточной кислотности в соке цитрусовых, для очистки сыворотки крови) и в других областях (для дезактивации жидких радиоактивных отходов, преобразования энергии в топливных элементах и др.). [c.103]

    В процессе электролиза по мере износа электродов увеличивается электрическое сопротивление электрода и межэлектродное расстояние, что существенно влияет на величину напряжения электролитической ячейки. При этом изменяется энергетический баланс электролитической ячейки, ее температурный режим, и поддерживать оптимальные условия процесса становится трудно. Замена электродов новыми вызывает перерывы производственного процесса и требует больших затрат труда. Продукты коррозии электродов загрязняют электролит и целевые продукты электролиза, снижая их качество, что вызывает необходимость дополнительных производственных операций па очистке. Такие осложнения возможны при электрохимическом получении хлора и каустической соды, а также хлоратов с использованием графитовых анодов. [c.15]

    Кислота соляная, кислота хлористоводородная, НС1,—раствор хлористого водорода в воде. Разъедает кожу. Получают при взаимодействии хлора и водорода (кислота синтетическая) или при взаимодействии серной кислоты и хлористого натрия (кислота техническая). Для производства синтетической кислоты используют водород, получаемый одновременно с хлором при электролизе водных растворов солей щелочных металлов. Хлористый водород получают сжиганием электролитического водорода в струе хлора, при этом развивается температура около 2400°. При поглощении охлажденного хлористого водорода водой получается синтетическая соляная кислота. Техническую соляную кислоту получают разложением хлористого натрия серной кислотой в механических печах. Образующийся хлористый водород после очистки и охлаждения до 25—30° поглощается водой. [c.96]


    Башня очистки электролитического водорода от хлора [c.336]

    Трубопровод , транспортирующие электролитические газы и абгазы из колонны 4 на очистку от хлора и двуокиси хлора [c.338]

    Приготовление хлор-серебряного электрода. Очищенную серебряную сетку (пластинку или проволоку), припаянную к медной проволоке (токоотвод) и впаянную U стеклянную трубку, электролитически покрыть сперва серебром, а затем хлоридом серебра. Серебряные проволоки диаметром 0,2- -0,5 мм впаивают в стеклянные трубки так, чтобы снаружи остался конец длиной 0,3- -0,5 см. Серебрепие провести по методике, описанной в работе 40. После серебрения пластинку в качестве апода перенсстп в 0,1 и. раствор ИС1 и вновь провести электролиз в течение 10 мин. В качестве катода использовать очищенную платиновую пластпнк) (см. стр. 147). При электролизе серебряная пластинка покрывается хлоридом серебра. Для очистки пластинки от хлора сменить полюса и продолжать электролиз выделяющийся водород связывается с хлором. Серебряную пластинку, покрытую хлоридом серебра, тщательно отмыть водой в течение 2 ч, меняя воду через 20—30 мин, до отрицательной реакции на ионы 1 с ионами Ag+. Затем ополоснуть пластинку раствором H I (или раствором КС1 в зависимости от назначения электрода) заданной концентрации и опустить пластинку в него. [c.154]

    Технологическая схема производства хлора и гидроксида натрия мембранным методом включает стадии подготовки и очистки рассола, электролиза, доупарки электролитической щелочи и обработки хлора и водорода. Основные отличия мембранного процесса от классических методов получения хлора и гидроксида натрия заключаются в том, что мембранный процесс требует более глубокой очистки питающего рассола от примесей и значительного подкисления анолита. На стадию доупарки поступает раствор щелочи, не содержащий хлоридов. [c.105]

    В электролитическом хлоре из баллонов содержатся кислород, окислы хлорал азот, опись и двуокись углерода, злористып водород и влага. Для очистки от этих часто не мешающих при органических работах, примесей, жидкий хлор испаряю1 и конденсируют в лрпсмнике, охлаждаемом смесью лфира и углекислоты. Осушителе служит серная кислота. [c.91]

    Технологическая схема процесса получения хлора, каустической соды и водорода (рис. 2.32) состоит из отделений растворения соли и очистки рассола, эле.стролиза, выпарки электролитического щелока, сущки хлора и водорода. [c.158]

    В химической и нефтехимической промышленности к производствам первой группы относятся цехи с технологическими печами, работающими на природном газе и малосернпстом мазуте ко второй — производство азотной кислоты с каталитической очисткой к третьей группе — цехи с дробильно-помольным оборудованием, сушильными барабанами, обогатительные фабрики к четвертой группе относится большинство химических и нефтехимических производств, таких как производство полиэтилена фенола, полиамидных и фенолформальдегидных смол, фталевого ангидрида, серной и соляной кислот, стирола, эфиров, электролитической щелочи и хлора, сульфата и карбида кальция, нефтяного кокса, корда, карбамида, гербицидов, цехи пирита аммо-нйя гидроксиламинсульфатного и отделения окисления производства капролактама, производства слабой азотной кислоты без каталитической очистки, производство аммиака, метанола, ацетилена и др. [c.60]

    В процессе электролитического производства хлора и каустической соды выделяется водород. При диафрагменном методе 1фОизводства водород может содержать примеси кис.порода азота, а также хлорорга)1ических продуктов, образующихся в анодном пространстве. После соответствующей очистки водород, может выть использован в некоторых процессах гидрирования. [c.404]

    Для обеспечения большей безопасности работы на стадии очистки водорода от кислорода электролитические газы можно разбавлять очиш,енным водородом, возвраш ая часть водорода после очистки от кислорода и охлаждения обратно в цикл для снижения содержания кислорода в смедд, поступающей в контактные печи. В тех случаях, когда водород не может быть рационально использован на предприятии, его выбрасывают в атмосферу. При этом электролитические газы разбавляют инертными газами — азотом или двуокисью углерода в зависимости от местных условий. Можно применять для этой цели воздух, однако требуется подача минимум 25— 30-кратного количества воздуха по отношению к продуцируемому в электролизерах водороду. При разбавлении газов воздухом возможен повышенный унос брызг электролита из электролизеров и усложняется санитарная очистка от хлора большого объема газов, выбрасываемых в атмосферу. [c.392]

    Солянокислый раствор, полученный после выделения и очистки плутония из образца мочи методами соосаждения, экстракции и ионного обмена, выпаривают до 1—2 мл н нейтрализуют по фенолфталеину. Затем к раствору добавляют 4 капли конц. НС1 для предупреждения соосаждения плутония с гидроокисью железа, которое может присутствовать в следовых количествах, и слегка нагревают. К полученному раствору добавляют 1 мл раствора Na lO (10—14 вес.% активного хлора) и быстро (для предотвращения разложения гипохлорита) Ъ мл 2 М КОН. Далее раотаор упаривают до половинного объема, количественно переносят в электролитическую ячёйку и разбавляют водой до 10 мл. [c.135]

    Очистка электролитов меднения заслуживает столь же большого внимания, как и очистка электролитов никелевания. Автору, к сожалению, не известны такого рода работы. Можно сослаться на регенерацию электролитов меднения электролитического рафинирования. Предельно допустимые концентрации примесей в электролите рафинирования в виде ионов (г/л) никель 20—30 железо 20—30 цинк 30 хлор 0,5 висмут 1,5 сурьма 0,1. Опыт показывает, что небольшие концентрации ионов никеля (до 30 г/л) существенно не влияют на свойства меди. Более того, медные осадки становятся более гладкими, ровными. [c.247]

    Одним из первых сорбентов, предложенных для поглощения ртутных паров из воздуха, был активированный уголь [814, 1208], способный адсорбировать до 5—7% ртути по весу (для закрытого эксикатора). Электролитический водород очищают от ртути пропусканием его через колонки с активированным углем, либо барбатированием через хлорную воду, а затем для отделения хлора и каломели — через раствор едкого натра. При содержании ртути в водороде 5—8 мг/м очистка активированным углем снижает содержание ртути до 0,1—0,01 мг/м , а при очистке хлорной водой — до 0,1—0,5 мг/м [62]. Однако активированный уголь является относительно малоемким адсорбентом паров ртути в динамических условиях при больших скоростях пропускания газа. Для поглощения ртутных паров предложен иодированный активированный уголь [1162, 1208]. [c.69]

    В настоящее время электролитический метод получения гипохлорита натрия применяют для обработки небольших количеств сточных вод на станциях, удаленных от мест производства хлора. НИИ коммунального водоснабжения и очистки воды АКХ им. К. Д. Памфилова разработаны электролизеры с графитовыми электродами производительностью 25, 50 и 100 кг активного хлора в 1 сут. Такие электролизеры серийно выпускаются промышленностью. Они просты в эксплуатации, состоят из электролитической саииы с водяцым охлаждением раствора электролита, расходной емкости и выпрямительного устройства. Установка выпускается в комплекте с автоматикой безопасности. Дозирование раствора гипохлорита натрия в сточную воду осуидествляется по тому же принципу, что и дозирование хлора. [c.176]

    На стадии обработки электролитического хлора предпочтение отдается косвенному охлаждению хлора в кожуготрубных титановых теплообменниках, очистке хлора в туманоотделителях Бринка,осушке хлора в тарельчатых колоннах, использованию газодувок на влажном хлоргазоо [c.9]

    Рассол, питающий ртутные электролитические ванны 1, подается в напорный бак для рассола 2. Сюда может поступать также анолит из ванн, не подвергающийся обесхлорированию, но донасыщенный поваренной солью до концентрации 305—310 г/л. Температура рассола 70—75° С. Хлорсодержащие газы из напорного бака отсасываются в отделение очистки их от хлора, поглощаемого известковым молоком или щелочью. [c.207]

    Большинство потребителей хлЬрата натрия используют его в виде сухих или влажных кристаллов. Поэтому, помимо стадии электролитического окисления хлорида натрия в хлорат, в технологическую схему производства включены стадии выделения кристаллического хлората натрия из электролитических растворов и его сушки, а также стадии приготовления и очистки от йежелательных примесей растворов Na l, поступающих на электролиз, водорода от загрязнения хлора и кислорода, санитарной очистки газовых и жидкостных выбросов. [c.61]

    Однако электролитический метод имеет немало недостатков. Прежде всего, исходный безводный Li l высокой чистоты получается с трудом и дорог. Некоторое загрязнение выделяющегося при электролизе лития натрием вызывает дополнительные операции для очистки . Далее, потребляется постоянный ток низкого напряжения, что увеличивает стоимость металла. Наконец, необходимо обезвреживать выделяющийся на аноде хлор [25]. Все это объясняет многочисленные поисковые работы и, в частности, определяет большой интерес к металлотермическим методам получения лития. Начатые в конце прошлого века исследования металлотермических процессов получения лития в настоящее время сильно расширились. Правда, ряд встретившихся затруднений все еще не позволяет, несмотря на большие достижения вакуумной техники, использовать новые методы получения лития в промышленном масштабе. В связи с этим укажем только на имеющиеся возможности. [c.94]

    При загрузке электролита Be lg и Na l берутся в весовом соотношении 1 1, что позволяет получить в электролите в начале электролиза 54 мольн. % Be lj. Загруженная смесь расплавляется в атмосфере хлора при 350° С. Большая электроположительность многих примесей (Си, Ре, РЬ, Ni) по сравнению с бериллием дает возможность освобождаться от них электролитическим путем. Предварительный электролиз для очистки электролита проводится при пониженной плотности тока (2,8 а/дм ) с цилиндрическим Ni-катодом, на котором выделяются примеси. После окончания очистки катод сменяется перфорированным, и далее электролиз [c.135]

    Металлокерамическое производство берилия [2]. Технологический процесс начинается со стадии измельчения слитков бериллия, полученных вакуумной плавкой, или электролитических чешуек. Чешуйки измельчаются в шаровой мельнице мокрого помола. Затем порошок обрабатывается щавелевой кислотой для извлечения примеси хлора и хлоридов (об этом говорилось выше в связи с очисткой металла). Слитки переводят в стружку, которая затем превращается в порошок в дисковых истирателях, облицованных бериллием и работающих в атмосфере аргона. [c.140]


Смотреть страницы где упоминается термин Хлор электролитический, очистка: [c.250]    [c.250]    [c.250]    [c.189]    [c.298]    [c.66]    [c.325]    [c.724]    [c.306]   
Методы эксперимента в органической химии Часть 1 (1980) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Башни очистки электролитического водорода от хлора в производстве хлората натрия

Очистка растворов хлорида натрия для электролитического получения хлора и каустической соды

Приготовление и очистка рассола для получения электролитического хлора и едкого кали

Приготовление и очистка рассола хлористого калия 1 для получения электролитического хлора и щелочи



© 2025 chem21.info Реклама на сайте