Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Удельные измерение

    Количество теплоты, подводимой (или отводимой) к произвольной массе вещества, обозначают Qt, а удельное количество теплоты, отнесенное к единице массы вещества, — (/. Теплоту в системе СИ измеряют в джоулях (Дж), килоджоулях (кДж) допускаются и такие единицы измерения, как калория и килокалория (ккал). [c.25]

    Теплоемкость. Для измерения количества теплоты, подводимой к га у (или отводимой от него), надо знать удельную теплоемкость газа. Удельной теплоемкостью (или просто теплоемкостью) называется количество теплоты, которое необходимо подвести к единице количества вещества (или отвести от него), чтобы повысить (или понизить) его температуру на один градус. [c.25]


    Пьер Луи Дюлонг (1785-1838) и Алексис Терез Пти (1791-1820) предложили метод приближенной оценки атомных масс тяжелых элементов еще в 1819 г., однако из-за общей неразберихи, которая творилась в химии в то время, он тоже остался незамеченным. Эти ученые проводили систематические исследования всех физических свойств, которые могли бы коррелировать с атомной массой элементов, и обнаружили, что подобная корреляция хорощо выполняется для удельных теплоемкостей твердых тел. Удельной теплоемкостью вещества называется количество тепла в джоулях, необходимое для повыщения температуры 1 г этого вещества на 1°С. Это свойство легко поддается измерению. Произведение удельной теплоемкости элемента на его атомную массу дает количество тепла, необходимое для повыщения температуры 1 моля этого элемента на ГС, т.е. его молярную теплоемкость. Дюлонг и Пти обратили внимание на то, что многие твердые элементы, атомные массы которых были известны, имеют молярную теплоемкость, близкую к 25 Дж град " моль " (табл. 6-4). Это указывает, что процесс поглощения тепла должен быть связан скорее с числом имеющихся атомов, чем с массой вещества. Последующее развитие теории теплоемкости твердых тел показало, что молярная теплоемкость простых твердых тел действительно должна представлять собой постоянную величину. Однако Дюлонг и Пти не могли предложить объяснения своему открытию. [c.292]

    Физическая адсорбция не обладает значительной специфичностью. Благодаря этой особенности она используется для измерения удельной поверхности твердых катализаторов и твердых тел. В противоположность этому, хемосорбция, вследствие своей химической природы, очень специфична. [c.86]

    Описание установки и методики измерений даны в работах 4, 36] общая погрешность измерений оценивалась в 6%. Удельную поверхность слоя определяли с учетом поверхности стенки по (11.56). Эквивалентный критерий Рейнольдса Rea = = 4pu/a i варьировали от 0,1 до 1000. На графиках откладывали зависимости /э от Res. Один из таких графиков, приведенный на рис. И. 11, показывает, что экспериментальные точки хорошо укладываются на кривую, описываемую уравнением  [c.60]

    Последнее подтверждается и данными по влиянию неровности поверхности элементов слоя на гидравлическое сопротивление. Как указывалось выше (стр. 49), неровности поверхности -масштабом б/ > 0,01 учитываются просто изменением удельной поверхности ао, а более мелкие определяются как шероховатости . Для пучков труб шахматного расположения шероховатости с б/с( = 0,006 начинают сказываться на величине гидравлического сопротивления при Кес > З-Ю , что соответствует Кеэ>6-10 . Немногочисленные прямые измерения гидравлического сопротивления шариков с гладкой и шероховатой поверхностями [37], а также гальки с природной и сглаженной поверхностями [84] согласуются с указанными выше выводами. [c.70]


    Используя химические инициаторы, такие, как перекись бензоила, гидроперекись кумола и аао-бис-изобутиронитрил, способные в интервале температур от 60 до 150° распадаться термически с образованием свободных радикалов, можно изучать полимеризацию в широком интервале температур. Вид кинетического закона в случае инициирования может быть получен путем замены = 2/с (1п) фг в уравнении (XVI.10.4). Здесь (1п) — концентрация инициатора кг — удельная константа скорости его распада, которая может быть измерена независимо Ф — эффективность, с которой радикалы инициируют цепи. Измерение ф связано с теми же трудностями, которые указаны в случае фотохимического инициирования. (Кроме того, при использовании перекиси в качестве инициатора возникают дополнительные трудности, связанные с тем, что радикалы индуцируют распад самого инициатора. Это может привести к тому, что ф или ф, окажется больше единицы.) [c.517]

    Здесь также важно выбрать единицу измерения и размерность удельного расхода работы, так как в данном случае речь идет не о работе в физическом смысле или энергии с размерностью [МЬ Т ] а о человеческой деятельности в известных общественных условиях в сфере материального производства. [c.316]

    Производственная деятельность является величиной, обладающей удельной экономической размерностью и измеряемой не непосредственно (например, рабочими часами), а по экономическим свойствам продукта, т. е. по его себестоимости. Единицы измерения себестоимости различны в разных странах и зависят от денежной единицы страны. [c.316]

    Измерение вязкости. Метод применим как к газообразным, так и к жидким системам, когда в ходе реакции изменяется удельная вязкость. [c.64]

    Первый порядок по мономеру и зависимость от корня квадратного из интенсивности света при фотохимической полимеризации были проверены для большого числа систем и при значительном изменении условий опыта. Из экспериментальных значений скорости полимеризации получена эмпирическая константа скорости = кр (2ф a/A ()V2. В таких опытах можно измерить 1а — удельную скорость поглощения света, но измерения ф довольно сложны. Один из методов состоит в использовании инициаторов, таких, как перекись бензола РЬСО — 00 — СОРЬ образующиеся из нее свободные радикалы фенил Рй или бензоил РЬСОО могут быть определены в полученном полимере. В принципе на одну цепь должно приходиться но одному бензольному кольцу, это позволяет подсчитать значение ф. С другой стороны, можно определить средний молекулярный вес образовавшегося мономера и сделать вывод о числе инициированных цеией. Это также дает возможность подсчитать ф. [c.516]

    Физические характеристики отдельных частиц катализатора влияют на кинетику реакций и на гидродинамику потока. Особенно важны такие характеристики, как диаметр частиц, удельная поверхность, пористость и диаметр пор. Эти характеристики связаны с каталитической активностью и для их измерения были разработаны весьма точные методы. В табл. 72 приведены некоторые характеристики типичных катализаторов. [c.307]

    После выбора аналитических спектральных полос для компонентов смеси производится калибровка при помощи измерения интенсивности поглощения всех компонентов на выбранных длинах волн. Интенсивность обычно измеряется удельным поглощением. Для удобства мсжно измерять интенсивность каким-либо другим образом, причем это зависит от того, в каких единицах желательно полу шть результат. Так, если анализируются образцы паров, концентрация будет выражаться в единицах давления, а результаты будут выражены в молярных процентах. Для жидкостей можно выбрать единицы, дающие результаты прямо либо в весовых процентах, либо в процентах по объему жидкости. Весьма желательно исследовать выполнимость закона Бэра путем построения графика зависимости поглощения от концентрации главного компонента смеси для каждой полосы поглощения. Описаны методы [5], по которым, если это необходимо, можно ввести поправку на нелинейность. [c.318]

    Экспериментально определяются плотность й, удельная рефракция и молекулярный вес М исходного масла. Плотность, соответствующая значениям М и измеренным для образца, находится по графику рис, 3. Разность между этим [c.377]

    Значения теплот смачивания АН определяют калориметрическими измерениями. Что же касается удельных теплот смачивания Л, то для конкретных систем жидкость— тип катализатора и условий тренировки поверхности образцов они являются вполне определенными и могут быть взяты из таблиц 2. Таким образом, задача оиределения поверхности образцов катализаторов практически сводится к калориметрическому измерению теплот их смачивания , г, 7з  [c.86]

    Удельный расход топлива находят по данным измерения расхода топлива и мощности, развиваемой двигателем. [c.114]


    Основные типы кинетических уравнений и единицы измерения удельной скорости приведены в табл. 1 (х—концентрация t — время, а и Ь — начальные концентрации реагентов А и В). [c.23]

    Удельная электропроводность х жидкости — это электропроводность, измеренная между плоскими электродами одинаковой [c.423]

    Иногда анализируемые образцы катализаторов состоят из гранул различного размера и при их испытании получаются несравнимые абсолютные значения разрушающей нагрузки. В таком случае определяют не абсолютную, а удельную прочность (коэффициент прочности). Для этого полученное абсолютное значение прочности делят на соответствующую величину диаметра, длины или площади торца таблетки, измеренные перед ее разрушением. [c.55]

    Удельный объем иор может быть найден двумя способами— непосредственным измерением и расчетом, если известны истинная и кажущаяся плотности катализатора. [c.94]

    Опытное определение удельной (с) или мольной (С) теплоемкости тела заключается в измерении теплоты Q, поглощаемой при нагревании одного грамма или одного моля вещества на —ix= [c.47]

    Произвести одиннадцать измерений температуры по термометру Бекмана после установления равномерной скорости изменения температуры. 10. Определить графически Д/. 11. Вычислить удельную теплоемкость твердого азобензола по уравнению (У,25). 12. Настроить горячий ультратермостат на температуру 70°. Поместить контейнер в горячий ультратермостат, а пробирку с азобензолом — в контейнер и закрыть контейнер ватным тампоном. Выдержать пробирку 40 мин при 70°. 13. Повторить пп. 5—10. 14, Рассчитать удельную теплоту плавлепия азобензола по уравнению (У,32). 15. Вычислить молярную теплоту плавления и молярное изменение энтальпии при плавлении азобензола. [c.149]

    Действительно, корректная обработка многих результатов, полученных в самых разнообразных условиях, позволяет убедиться в выполнении соотношения Гриффитса Рс а. если брать для расчетов значения удельной свободной энергии тех поверхностей, которые реально успевают образоваться в ходе разрушения. Так, прочность композитов из кварцевого песка с хлоридом натрия, измеренная на воздухе и в воде, оказывается связанной с поверхностной энергией сухой и увлажненной силанольной поверхности [272]. Если же проанализировать результаты измерений скорости роста трещины во влажном кварце [298], то из анализа полученного отношения нижнего и верхнего пороговых значений фактора интенсивности напряжений можно сделать вывод, что при напряжениях выше верхнего порога рвутся силоксановые связи без участия воды, а при докритическом росте трещины успевает образоваться гидроксилированная поверхность и произойти ее [c.97]

    Итак, полного решения задачи о движении жидкости в зернистом слое произвольной структуры не существует. В то же время экспериментальное определение перепада давления при движении замеренного расхода жидкости или газа через трубку с зернистым слоем относительно просто. Поэтому число опубликованных исследований по измерению гидравлического сопротивления зернистых слоев различных конкретных матеряалов очень велико и продолжает увеличиваться. Для обобщения полученных результатов и вывода удобных для инженерного расчета формул существенно, однако, чтобы при замерах перепада давления и расхода жидкости фиксировались также такие основные параметры слоя, как порозность слоя е, удельная поверхность а и средний линейный размер элементов d. Методы измерения этих величин весьма разнообразны и мы изложим только некоторые основные из них. [c.47]

    Для определения краевого угла 6о по этому уравнению надо знать разность удельных межфазных энергий твердой подложки на границе с газовой фазой osi/ и с жидкостью Osi.. Так как не существует независимых от (13.4) методов определения ни каждой из межфазных энергий, ни их разности, уравнение Юнга, в отличие от уравнения (13.3), не позволяет определить величину краевого угла. Его используют обычно для нахождения разности osv—osL на основании измеренных значений 6о. [c.213]

    Использовались образцы гамма-оксида алюминия ( -А Оз) с удельной поверхностью 5 = 77,6 м /г, три образца гидроксида алюминия (ГОА-4, ГОА-2, ГОА-1) с 5 = 51,5 20,1 8,8 м уг и кварц с 5 = 2,1 MVr. Измерения показали, что, в отличие от натриевых форм цеолитов, для дегидратированных -АЬОз, гидроксида алюминия и кварца не наблюдаются максимумы при температурах 180—280 К. Это говорит об отсутствии ионов или полярных групп, способных переориентироваться под действием теплового движения в указанном интервале температур. При 105—180 К наблюдаются слабые токи, которые, однако, превышают погрешность измерений (рис. 16.8). Размытость этого максимума связана, по-видимому, со значительным распределением времен релаксации. [c.263]

    В процессе анализа структуры все приведенные интегральные характеристики материала рассчитываются по результатам анализа представительного объема и, таким образом, число составных частей фазы, среднее значение поверхностной кривизны, связность и другие характеристики обычно относятся к единице его объема, т. е. являются средними статистическими значениями удельных объемных характеристик. Строго говоря, связность G, рассматриваемая как род гомеоморфных поверхностей, не должна быть подвержена статистическим колебаниям. Однако в природе формирование контактов частиц является статистическим процессом, зависящим от таких стохастических факторов как перемешивание в системе, смачивание, диффузия, растворение и рост частиц фаз, взаимодействие фаз и др., поэтому в принципе возможно рассматривать Gy как статистическую величину. Потребность экспрессного определения связности фаз в многофазных средах в последнее время быстро растет в связи с определяющей ролью этой характеристики в описании и прогнозировании механического поведения структурно неоднородных материалов, выявления структуры многофазных потоков в его объеме. Вместе с тем существующие методы определения Gy до сих пор практически основывались на методе анализа параллельных сечений структуры. В работах [47, 481 предложен иной метод определения статистической характеристики связности на основании простых измерений характеристик одного случайного представительного сечения материала. Разрабатываются также методы стереоскопической оценки Gy. [c.136]

    Как было показано в работе [60], определение ао по течению в вязкостном режиме с газом при диаметрах частиц, меньших 60 мкм (применялись микросферы из полистирола), дает резко заниженное значение против непосредственно определенных значений о из замеров под микроскопом. -В этих же условиях измерение ао в молекулярном режиме течения дало хорошее совпадение с результатами прямого расчета [60]. При условии введения поправок на молекулярный режим предел измерения ао с применением газа и расчетом по (П. 55) снижается до диаметра частиц 10 мкм и ао 0,6 м /см Жидкостные приборы также могут быть использованы примерно до этих же значений. При использовании вязкостного режима, верхний предел дисперсности определяется еще диаметром ячейки (аппарата) (d < 0,05 >ап, см. ниже) и чувствительностью прибора, замеряющего перепад давления в зернистом слое. Удельную поверхность частиц диаметром более 1 мм обычно определяют в интервале скоростей,- где перепад давления линейно зависит от скорости, пропускаемой через слой жидкости [26, R. В. M Mul-lin 36]. [c.51]

    Поверхность частиц первой группы можно найтк по приближенным геометрическим зависимостям с предварительным обмером линейных размеров частиц по главным осям. Так, Вилли и Грегори [26 определяли размеры сфероидальных частиц с номинальным диаметром 0,279 и 0,127 мм обмером под микроскопом и с помощью проектора, а также методом измерения длин отрезков зерен, пересекаемых бросаемой на шлиф стальной иглой. Результаты измерений усреднялись по данным 200— 600 опытов. Для более мелких частиц с номинальным диаметром 0,028 мм удельную поверхность Оо измеряли по адсорбции азота. Полученные различными методами значения oq совпадали как друг с другом, так и с ао, определенной по перепаду давления из соотношения (П. 55) при Ki = 4,8 с точностью 5%. [c.57]

    Теплоемкость веществ, отнесенная к весовым единицам измерения их массы, называется удельной теплоемкостью (с кал1г-град., с ккал кг- град, с дж/кг- град), а к молярным единицам измерения — молярной теплоемкостью [c.87]

    Выше бы го подробно рассмотрено одно из наиболее важных свойств адсорбента — его избирательная адсорбционная емкость, а та1 жс влияние на нее температуры. Удельная поверхность адсорб( нта, таки е яиляющаяся весьма важным свойством, обычно определяется по мс тоду Брунауэра, Эмметта и Теллера 12], получившему название метода БЭТ. Избирательная адсорбционная емкость адсорбентов для толуола, растворенного в изооктане, изменяется пропорционально удельной поверхности, измеренной но адсорбции азота [40] или бутана [9]. [c.159]

    Денсиметрический метод. В 1944 г. Линдертсе успешно разработал метод, основанный на измерении плотности с1, удельной рефракции (по Лорентц-Лоренцу) и молекулярногс веса М. Метод основан на сопоставлении прямого метода с физическими свойствами большого числа прямо-гонных или обработанных масляных фракций. Методика определения очень похожа на методику кольцевого анализа по Уотерману. Основное различие заключается в том, что вместо анилиновой точки определяется плотность. [c.377]

    Пьезометрические уров 1емеры определяют гидростатическое давление столба измеряемой жидкости, зная которое легко установить уровень жидкости в резервуаре. Этот метод позволяет применять обычные приборы для измерения давления с необходимым диапазоном измерения, учитывающие удельный вес и шеряемой жидкости. Шкалу прибора при этом можно отградуировать либо в линейных единицах (метрах, сантиметрах), либо в объемных единицах (литрах, кубических метрах). Наиболее простой является схема установки в качестве уро внемера стандартного регистрирующего или указывающего манометра. Для использования этого метода измерения сконструированы уровнемеры с про-булькиванием сжатого воздуха через всю высоту столба жидкости. С помощью таких уровнемеров можно измерять уровень в резервуарах под атмосферным или небольшим избыточным давлением, а также передавать показания на некоторое расстояние. [c.58]

    Сушествуют также методы измерения удельной поверхности катализаторов, основанные на адсорбции из жидкой фазы, например, чистого вещества или двухком-понентиого раствора. В случае применения в качестве адсорбата индивидуальной жидкости удельную поверхность вычисляют по количеству выделяющейся теплоты смачивания, а в случае адсорбции компонентов растворов— ио уменьшению концентрации наиболее сильно адсорбирующегося компонента. [c.86]

    Последовательность выполнения работы. 1. Включить термостат на заданную температуру в пределах 24—26°. 2. Взвесить калориметрический сосуд на технических весах, залить в пего 150 мл воды при комнатной температуре и вновь взвесить. 3. Установить калориметрический сосуд в термостат и закрепить его на такой высоте, чтобы ртутный резервуар термометра Бекмапа был полностью покрыт водой, лопасти мешалки должны быть расположены у дна сосуда. 4. Включить мешалку и установить максимальную скорость ее вращения, при которой не происходит разбрызгивания воды, движком реостата. 5. Включить нагреватель и установить ток на 2—2,5 а. Выключить нагреватель, когда температура воды станет на 1,5—2° ниже температуры воздуха в боксе. 7. Наблюдать за скоростью изменения температуры по термометру Бекмана и включить секундомер, когда она станет равномерной и равной 0,02—0,04 град мин. 8. Записать 10—12 отсчетов — начальный период опыта —по термометру Бекмана через каждые 30 сек. 9. Включить нагреватель и второй секундомер, но которому определяется продолжительность пропускания тока через нагреватель. Записать ток и напряжение нагревателя. Продолжать запись температуры по термометру Бекмана через каждые 30 сек. 10. Записать ток и падение напряжения через 2 мин и выключить нагреватель. И. Продолжать измерения температуры по термометру Бекмана и сделать 12—15 отсчетов после того как скорость изменения температуры установится равномерной. 12. Определить графически АЛ 13. Рассчитать Wi по уравнению (V,13). 14. Вылить воду из калориметрического сосуда, высушить его, взвесить на технических весах, залить 150 мл исследуемой жидкости и вновь взвесить. 15. Определить суммарную теплоемкость калориметрической системы 11 2. повторив пп. 3—13. 16. Вычислить истинную удельную теплоемкость исследуемой жидкости но уравнению (V,24) при температуре (Tj + Т- 12. [c.144]

    Степень диссоциации а может быть определена методом измерения электронровод ости. Различают удельную и эквивалентную электропроводности. Удельная электропроводность к — величина, обратная уделыюму соиротцвлению [c.268]

    Рассчитать удельную электропроводность воды по измеренным сопротивлениям н значению константы прибора ф. Учесть ее значение при расчете удельной электрон говодности раствора слабого электролита. [c.280]

    Уде№вую электрическую 1фОводнмость о1феделяют по методике, разработанной группой авторов [ПО]. Сущность измерения заключается в измерении электрического сопротивления топлива с последующим п >есчетом его в удельную электрическую проводимость. [c.167]

    Измеренная указанным способом удельная электрическая проводимость реактивных топлив, яе содержащих антиэлектростатич жих присадок и содержащих их, находится в пределах 1-15 пСм/м и 50-600 пСм/м соответственно. [c.167]

    Сила притяжения единицы объема вещества к Земле называется удельным весом. Удельный вес измеряется в кГ1м и Г/ле . Удельный вес зависит от ускорения силы тяжести в точке измерения. [c.26]


Смотреть страницы где упоминается термин Удельные измерение: [c.394]    [c.376]    [c.378]    [c.275]    [c.277]    [c.278]    [c.280]   
Справочник по химии Издание 2 (1949) -- [ c.110 ]




ПОИСК







© 2025 chem21.info Реклама на сайте