Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка от гомологов

    При рассмотрении проблем, связанных с получением чистых высокомолекулярных углеводородов, возникают специфические трудности. Наиболее важной проблемой является большое число возможных примесей изомеров или гомологов с малым различием физических свойств, в частности температур кипения, что уменьшает эффективность процесса фракционного разделения при очистке. Кроме того, применению колонок высокой эффективности для фракционной перегонки обычно препятствует очень низкая упругость паров высокомолекулярных веществ. [c.496]


    Отходящие газы окислительного пиролиза, содержащие 6 — 8% ацетилена, после очистки от сажи поступают на масляную абсорбцию, где отделяется часть высших гомологов ацетилена. Целевой ацетилен выделяется из газов абсорбцией селективными растворителями [8, 9]. [c.15]

    Для дополнительной очистки дифенилолпропана, выделенного из реакционной массы в виде аддукта с фенолом, предложено использовать его аддукты с крезолами. Для этого аддукт дифенилолпропан + фенол растворяют в смеси крезолов, состоящей в основном из мета- и пара-изомеров (75%), 11% о-крезола и 14% других гомологов фенола. Затем смесь охлаждают. Выделившиеся при этом кристаллы представляют собой аддукт дифенилолпропана с крезолами. [c.163]

    Катализаторы конверсии газообразных гомологов метана с водяным паром при средних температурах. Среднетемпературную конверсию гомологов метана проводят при низком, среднем и высоком давлении (см. табл. 23). Сырье очищают от серу содержащих соединений и непредельных углеводородов, или направляют на переработку без очистки (см. табл. 23, № 1—4). Содержание непредельных углеводородов в сырье может доходить до 24%. В этом случае перед подачей сырья в реактор к нему подмешивают воздух (табл. 23, №3  [c.40]

    Делаются попытки усовершенствовать производство карбида кальция, однако это связано с большим расходом электроэнергии и сырья, высокими капиталовложениями и себестоимостью кроме того, подобные установки технологически трудноуправляемы. Было предложено, например, для получения необходимого тепла сжигать (в присутствии кислорода) часть кокса для уменьшения расхода электроэнергии. При этом образуется много окиси углерода, использование которой в процессе также может снизить себестоимость ацетилена. В настоящее время, однако, большую часть ацетилена получают старым методом (из карбида кальция). Карбид кальция обладает тем преимуществом, что из него получается ацетилен 97— 98%-ной концентрации, поэтому дальнейшая его очистка очень проста его легко транспортировать. Ацетилен же, полученный из ме-. тана (и других углеводородов), требует трудоемкой операции выделения его из газовых смесей и транспортирования в резервуарах под давлением. Критерием выбора конкретного процесса получения ацетилена из метана (или его гомологов) служат его основные характеристики (термодинамика, кинетика, механизм реакции). [c.99]

    Для повышения выхода кокса из прямогонных остатков предпочтительно использовать гудрон, имеющий более высокую коксуемость. В отдельных случаях приходится отходить от этого общего правила. При выдаче рекомендаций для коксования прямогонных остатков эхабинских (сахалинских) нефтей нами был выбран мазут, а не гудрон, так как бензиновая фракция, полученная при коксовании гудрона (в полную противоположность мазуту), оказалась настолько нестабильной, что не поддавалась обычным методам очистки. Применение специальных методов очистки было мало эффективно. По-видимому, в вакуумном отгоне эхабинской нефти нафтенового основания находятся в повышенном количестве гомологи нафталина и другие полициклические ароматические углеводороды, которые, по данным Н. И. Черножукова и С. Э. Крейна [274], являются эффективными ингибиторами против окисления нафтеновых и парафиновых углеводородов молекулярным кислородом, а при отгоне вакуумного газойля из остатка эти естественные ингибиторы удалялись. [c.25]


    Для инициирования реакции окисления метана применяются также гомологи метана [84, 85], озон [86], атомарный водород [87], нитрометан [88], хлористый нитрозил и хлористый нитрил [89]. электроразряд [90], фотохимические средства воздействия [91] и т. д. Все перечисленные способы инициирования дороги и сложны, а эффективность средств воздействия незначительна (выход до 2% СНоО на пропущенный метан). Так, при использовании углеводородов наблюдается разветвленность процесса с образованием большого числа различных продуктов, что требует сложных и дорогостоящих процессов разделения полученной смеси. Окислы азота оказывают коррозионное воздействие на аппаратуру, а малейшие следы окислов в конечном продукте — СНаО — являются нежелательными примесями, от которых освобождаются тщательной и дорогостоящей очисткой с применением ионообменных смол. [c.166]

    Производство водорода методом паровой конверсии углеводородов включает несколько стадий подготовка сырья к конверсии, собственно конверсия и удаление окислов углерода из конвертированного газа. На стадии подготовки сырье очищают от непредельных углеводородов, органических соединений серы и сероводорода в некоторых случаях проводят стабилизацию методом частичной конверсии гомологов метана. На стадии удаления окислов углерода из конвертированного газа проводят конверсию окиси углерода водяным паром, очистку газа от двуокиси углерода и удаление остаточных окислов углерода методом метанирования. Перечисленные стадии, за исключением отмывки газа от двуокиси углерода,, являются каталитическими процессами, близкими между собой по> аппаратурному оформлению. [c.59]

    ИСПЫТАНИЕ НОВОГО ПРОЦЕССА ПАРОВОЙ ОЧИСТКИ ПРИРОДНОГО ГАЗА ОТ ГОМОЛОГОВ МЕТАНА НА ОПЫТНО-ПРОМЫШЛЕННОЙ УСТАНОВКЕ [c.52]

    На Руставском химзаводе была предпринята попытка применения для этой цели известного способа деструктивного гидрирования гомологов метана на никель-хромовом катализаторе которая закончилась неудачей. При этом было установлено, что данный способ, оправдавший себя при очистке отечественного природного газа, содержащего 5-10 гомологов метана / ,47,. совершенно не пригоден для очистки иранского газа, содержащего до 17% высших углеводородов. Гидроочистка газа с повышенным содержанием гомологов метана связана с В1 елением большого количества тепла, перегревом катализатора и выходом его из строя вследствие спекания и зауглероживания. В этом случае не помогает использование аппаратуры /57, специально разработанной с учетом необходимости быстрого отвода большого количества тепла. [c.53]

    Сероочистка природного газа, направляемого на паровую очистку от гомологов метана в данном случае проводилась на окисно-цинковом поглотителе 11/. Результаты работы описанной установки приведены в табл. 1 и 2, из которых следует, что осуществление процесса очистки природного газа по первому варианту (с применением одного водяного пара в качестве очистительного агента) и по второму варианту (смесью водяного пара с водородом) обеспечивает достаточно высокую степень очистки газа от гомологов метана. [c.56]

    Из табл. 1 видно, что при работе установки с использованием в качестве очистительного агента одного водяного пара при объемной скорости природного газа 1500 ч и температуре 270-340°С максимальная степень превращения гомологов равна 94,5 . Дальнейшего повышения глубины очистки не удалось добиться из-за практической невозможности повышения температуры до оптимального уровня (350°С) на существующем оборудовании. Получаемый при этом очищенный газ содержит около 3% юдорода и 3,5% двуокиси углерода при полном отсутствии окиси углерода. При осуществлении процесса паровой очистки рост температуры в слое катализатора не наблюдался. [c.56]

    Кинетика реакций гидрогенолиза гомологов метана в условиях очистки природного газа (ПГ) не изучена. [c.64]

    Очистку ПГ от гомологов метана нецелесообразно осуществлять при содержании водорода меньше стехиометрического не только из-за необходимости достижения высокой степени превращения, но и по причине зауглероживания катализатора. Большой избыток 4 также нерационален из-за торможения реакций гидрогенолиза углеводородов. Поэтому при концентрации ниже стехиометрической порядок по водороду положительный, а в случае значительного его избытка отрицательный /1-3/. Очевидно, на графике зависимости степени превращения этана от содержания водорода при концентрации 4 не- сколько выше стехиометрической будет наблюдаться максимум (вернее-плато), когда порядок по водороду будет нулевым. Ширина плато, вероятно, определяется температурой процесса временем контакта, точностью анализа и т.д. По этой причине при очистке ПГ 1/ в условиях небольшого избытка порядок по последнему был нулевой. [c.64]


    Таким образом, аппарат обеспечивает требуемую степень очистки даже при увеличении содержания гомо логов в 1,5 раза. Заметим, что при увеличении концентрации гомологов метана необходимо снижать температуру перед полками реактора. Поэтому при очистке ПГ с содержанием гомологов около 15 об. % в опытно-промышленном реакторе температура на входе в последний составляла 220°С pJ  [c.78]

    При каталитическом гидрировании ацетилен превращается в основном в этилен. Гомологи ацетилена превращаются в другие углеводороды. Процесс каталитического гидрирования может быть произведен на различных этапах очистки пирогаза. Гидрирование для удаления ацетилена может быть сделано до низкотемпературной ректификации. [c.308]

    Наиболее широко для деструкции ароматических углеводородов в разбавленных сточных водах применяют биологическую очистку [36]. Например, биологическую очистку можно использовать для обезвреживания воды цехов пиролиза, содержащей бензол, толуол, ксилолы и нафталин [28], для деструкции бензола и его гомологов, стирола и а-метилстирола, нафталина [5]. [c.329]

    Технологический процесс получения ацетилена этим способом основан на термоокислительном пиролизе метана с кислородом (соотношение кислорода и метана должно быть в пределах 0,58— 0,62) в реакторах при 1400—1500 °С и избыточном давлении. Процесс состоит из следующих стадий подогрева метана и кислорода пиролиза метана и закалки пирогаза очистки пирогазов от сажл в скрубберах или электрофильтрах компримирования пирогаза до давления 0,8—1,2 МПа и абсорбции ацетилена и его гомологов селективным растворителем (метилпирролидоном, диметилформ-амидом) фракционной десорбции газов в десорбере первой ступени (при давлении 20 кПа) и второй ступени (при вакууме 80 кПа) с выделением при 80—90 °С чистого ацетилена и нагреве с водяным паром (ПО—116°С) фракции высших гомологов ацетилена регенерации растворителя (удаления твердых продуктов полимеризации гомологов ацетилена) сжигания отходов производства в печи (сажи из сажеотстойников продуктов "полимеризации, выделенных при регенерации растворителя высших гомологов ацетилена, полученных на второй ступени фракционной десорбции). [c.28]

    Для выделения и очистки ацетилена используют его свойство лучше, чем другие компоненты реакционных газов, растворяться в некоторых агентах в метаноле или ацетоне при охлаждении до —70 "С и особенно в диметилформамиде и К-метилпирролидоне при комнатной температуре. Обычно газ вначале освобождают от сажи, затем от лучше растворимых ароматических соединений и гомологов ацетилена (форабсорбция), после чего поглощают ацетилен. Очистку его ведут путем ступенчатой десорбции. [c.84]

    Исходные вещества. Технический бензол или другой ароматический углеводород, применяемый для алкилирования, нужно предварительно осушать, для чего используют отгонку воды в виде азеотропной смеси с ароматическим углеводородом (бензол или толуол). При такой азеотропной осушке содержание влаги снижается до 0,002—0,005%. Фракции низших олефинов поступают с газоразделительных установок пиролиза или крекинга до-статсчио сухими, ио нередко содержат различные иримеси, ведущие к повышенному расходу реагентов и катализатора, а также к образованию побочных веществ, от которых иногда трудно очистить целевой продукт (С2Н2 или его гомологи, бутадиен, другие олефины). Нередко очистку фракций от этих веществ не проводят, допуская наличие 2—3% (об.) указанных примесей, но значительно лучшие результаты получаются, когда количество этих примесей снижено примерно в 10 раз. Более тонкая очистка фракций от ненасыщенных веществ для алкилирования не требуется, что в еще большей степени относится к примесям парафинов. Очевидно, что оптимальная степень очистки фракций должна определяться экономическими расчетами. [c.251]

    Веселов В.В., Мешенко Н.Т., Цимбалистая H.H. Очистка природного газа от гомологов метана каталитической конверсией с водяным паром. - Хим, пром-сть. I97I, й 12, с. 9- И. [c.52]

    В иранском природном газе, используемом Руставским химзаводом в качестве сырья для химической переработки с целью получения синильной кислоты, помимо метана содержится значительное (до 17 ) количество его гомологов. Непосредственное применение такого сырья создает существенные трудности при его переработке в этом процеосе (быстрый выход из строя используемых в качестве катализатора платиновых сеток из-за отложения углерода и других причин, связанных с наличием гомологов). В связи с этим возникает необходимость очистки такого сырья от гомологов метана. [c.52]

    В Институте газа АН УССР давно разработан новый способ так называемой паровой очистки природного газа от гомологов метана, основанный на селективно осуществляемых реакциях паровой конверсии этих углеводородов с образованием метана /8/  [c.53]

    В промшленном масштабе испытаны два варианта очистки природного газа от гомологов метана. По первому варианту очистка природного газа от гомологов метана осуществлялась при дозировке водяного пара и природного газа в верхнюю часть реактора 3 (рис. I). [c.55]

    Влияние тешературного режима на эффективность очистки природного газа от гомологов метана [c.58]

    Веселов В.В., Мешенко Н.Т., Цимбалистая Н.И. Очистка природного газа от гомологов метана каталитической конверсией с водяным паром. - Хт. пром-сть СССР, I97I. Л 12, о. 889-891. [c.63]

    ОПТИМАЛЬНОЕ ПРОЕКТИРОВАНИЕ РЕАКТОРА ОЧИСТКИ ПРИРОДНОГО ГАЗА ОТ ГОМОЛОГОВ МЕГАНА И ЕГО ПРОВЕРКА В ПРОМЫШЛЕННЫХ УСЛОВИЯХ [c.72]

    Впервые произведено опытно-промышленное испытание процесса паровой очистки природного газа от гомологов метана с пракенением в качестве очистительного агента одного водяного пара или смеси водяного пара с водородом. [c.180]

    Применена модель вдеального вытеснения для расчета полочного реактора (с промезогточными техиообменниками), применяемого в процессе очистки. природного газа от гомологов метана. [c.181]

    Как уже отмечалось, в бензоле, получаемом сернокислотной очисткой фракции БТК (см. гл. 4) может присутствовать вес1. 1а. значительное количество тиофена —от 0,02 до 0,12%. Более глубокое удаление тиофена нерационально, так как сопряжено с большими потерями ароматических углеводородов, особенно метилированных гомологов бензола. На практике с целью глубокого извлечения тиофена полученный бензол подвергают дополнительной очистке. Поскольку на первой стадии (очистка фракции БТК) используется 92—94%-ная кислота, естественно, для упрощения технологии и вторую стадию (очистку бензола) проводить кислотой этой же концентрации. Такой двухступенчатый процесс был осуществлен в коксохимическом производстве Нижнетагильского металлургического комбината для получения бензола, практически не содержащего тиофена [26]. Процесс характеризовался большой длительностью очистки (4—6 ч) и значительными потерями бензола (5,5%), что объясняется неблагоприятными условиями для сульфирования тиофена. [c.213]


Библиография для Очистка от гомологов: [c.57]    [c.52]    [c.79]    [c.79]    [c.72]    [c.79]    [c.174]   
Смотреть страницы где упоминается термин Очистка от гомологов: [c.196]    [c.255]    [c.50]    [c.22]    [c.61]    [c.45]    [c.54]    [c.61]    [c.175]    [c.180]    [c.71]    [c.222]    [c.231]    [c.254]   
Производства ацетилена (1970) -- [ c.258 , c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Гомологи

Гомологи гомология

Гомология



© 2025 chem21.info Реклама на сайте