Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Точна кипения

    Испаритель служит для испарения (точнее — кипения) в нем жидкого холодильного агента при низкой температуре за счет теплоты, отнимаемой для этого от охлаждаемой среды. [c.35]

    Редкие газы Символ Атомный вес Плотность (воздуха Точна кипения С Проц. по объему в воздухе [c.22]

    При определении кривых ИТК нефтяных смесей используют стандартные методы и аппаратуру. По ГОСТ 11011—64 для этих целей. рекомендуется аппарат АРН-2 с колонкой четкой ректификации диаметром 50 мм, высотой слоя проволочной насадки 1016 мм (рис. 1-4). Колонка имеет куб 2 с электрической печью 1 и конденсатор 5. Стандартом регламентируются условия перегонки скорость перегонки, остаточное давление, расход орошения и т. д., при соблюдении которых разделительная способность колонки соответствует 20 т. т. Аппарат АРН-2 обеспечивает достаточную четкость разделения нефтяных смесей, при этом интервал выкипания составляет 1—3°С. Очевидно, чем е фракционный состав отбираемых погонов, тем точнее получают истинные температуры кипения нефтяных смесей. Практически для интервала 3°С фракций получаются достаточно точные кривые истинных температур кипения. [c.20]


    При смешении потоков жидкостей и паров не происходит простого их суммирования, оно сопровождается небольшим частичным выкипанием жидкости и частичной конденсацией паров. Поэтому допущение о том, что количества и g равны суммарным количествам смешивающихся паровых и жидких потоков не вполне точно. Однако ввиду того, что в небольших пределах по концентрации энтальпийные кривые на тепловой диаграмме и кривые кипения и конденсации на диаграмме 1 — х, у близки к прямолинейному очертанию, степенью конденсации и испарения при смешении одноименных потоков в секции питания можно практически пренебречь. [c.160]

    Колонна 3 состоит из двух секций нижней — скрубберной (для удаления и возврата в реактор коксовой пыли) и верхней — фракционирующей. Уровень жидкости внизу колонны точно регулируется, чтобы предотвратить переток загрязненного коксом дистиллята в реактор. Этот дистиллят присоединяется к сырью секции коксования. Боковой дистиллят с пределами кипения 220—540° является компонентом сырья установки каталитического крекинга. С верха колонны отводятся бензин коксования и газ. [c.69]

    Для большинства ранее проводившихся определений молекулярного веса углеводородов применялись простые формы криоско-пического метода (понижение температуры замерзания [348—353]). Было использовано много растворителей, но для лучших из них точность определения составила 1—2 %. Эбулиоскопические методы (повышение температуры кипения) обычно более быстрые и такие же точные [354—358]. Наконец был сделан обзор но сравнению этих двух методов в нескольких различных нефтяных лабораториях. Низкие молекулярные веса обычно определяют по методам плотности паров [359—360]. Все эти методы дают ряд средних молекулярных весов, определяемых [c.206]

    Фракционный состав бензинов, испаряющихся со скоростью, при которой отлагается хорошая пленка, установлен довольно точно [21—24]. В зависимости от конкретных условий применения в качестве растворителей используются как легкие фракции (пределы кипения 40—150° С), так и весьма тяжелые бензино-лигроиновые смеси (пределы кипения 150—230° С). Последние используются главным образом для получения покрытий с форсированной принудительной сушкой. [c.561]

    По принятой температурной шкале нормальная температура кипения ноды в соответствии с новейшими исследованиями равна 373,148 °К, а интервал между нулем шкалы Цельсия и нормальной точкой кипения воды равен пе 100 °К (точно), а 99,998 °К. [c.86]

    Уравнение (VI, 19) дает возможность вычислить молекулярный вес растворенного вещества М. , если известно повышение температуры кипения АТ раствора определенной весовой концентрации. Метод определения молекулярного веса по уравнению (VI, 19) называется обычно эбуллиоскопией (более точным является термин эбуллиометрия). [c.200]


    Добавление бутана резко снижает температуру начала кипения бензина. Хотя температура начала кипения является наименее точным показателем фракционного состава бензина, так как зависит от многих факторов, определение ее и нормирование все же целесообразно. Все низкокипящие компоненты резко влияют на температуру перегонки 10% бензина, менее резко — на температуру перегонки 50% и практически не влияют иа температуры перегонки 90% и конца кипения. [c.174]

    Соли имеют более высокие температуры плавления и кипения, чем молекулярные вещества, потому что для разрущения их устойчивой кристаллической решетки необходима большая тепловая энергия еще большая тепловая энергия требуется для того, чтобы заставить положительные и отрицательные ионы обобществить свои электроны и объединиться в нейтральные молекулы, способные перейти в газовую фазу. Однако многие соли хорошо растворяются в воде, поскольку притяжение со стороны полярных молекул воды позволяет компенсировать притяжение между ионами кристалла. Ионы, окруженные в растворе полярными молекулами воды, называются гидратированными. Бензин и другие неполярные жидкости неспособны растворять соли, поскольку они не гидратируют ионы (точнее, не сольватируют их, так как в этом случае растворителем является не вода). [c.54]

    Строго говоря, соотношение (18-2) справедливо только для энтальпии и энтропии при температуре кипения, но значения этих величин при найти нелегко. Однако, поскольку Я и 5 мало зависят от температуры, можно найти приближенное значение температуры кипения, пользуясь данными о ДЯ° п и Д5° п при 298 К, вычисленными по данным приложения 3. Найденные таким образом приближенные температуры кипения приведены в последней колонке табл. 18-1 они всего на несколько градусов отличаются от истинных 7 . Расхождения обусловлены не приближенным характером соотношения (18-2), а тем, что и Д . при 298 К не вполне точно совпадают с их значениями при температуре кипения. [c.125]

    Как приближенно определить температуру кипения жидкости, пользуясь только данными, приведенными в приложении 3 Какие сведения необходимо еще иметь для точного определения температуры кипения  [c.150]

    Название глицерина тоже происходит от греческого слова сладкий , и он в самом деле сладкий — точно так же, как и этиленгликоль. Этиленгликоль довольно ядовит, а глицерин соверщенно безвреден. Его можно употреблять в пищу. Нередко глицерин добавляют в кондитерские кремы, чтобы, сохранив их сладость, сделать их нежнее. Кроме того, глицерин не дает кремам засыхать. Он и сам не испаряется (его температура кипения слищком высока, чтобы он испарялся при комнатной температуре) и не дает испаряться воде, крепко удерживая ее. [c.106]

    Если титрование было проведено недостаточно точно или слишком медленно, его нужно повторить. Для этого к оттитрованному раствору прибавляют 3—5 мл раствора (NHi)2S308, снова нагревают до начала кипения и ведут определение, как в первый раз. [c.392]

    Испаряемость реактивных топлив оценивают, как и автобен — зинов, фракционным составом и давлением насьщенных паров. Для реактивных топлив нормируются температура начала кипения, 10, 50, 90 и 98-процентного выкипания фракции. Температура конца кипения (точнее 98 % перегонки) регламентируется требованиями пре>>сде всего к низкотемпературным свойствам, а начала кипения — пожарной опасностью и требованием к упругости паров. Естественно, у реактивных топлив для сверхзвуковых самолетов температура начала кипения существенно выше, чем для дозвуковых. В ВРД нашли применение 3 типа различающихся по фракционному составу топлив. Первый тип реактивных топлив, который наиболее распространен, — это керосины с пределами выкипания 135 — 150 и 250- 280 °С (отечественные топлива Т-1, ТС-1 и РТ, зарубежное — JR-5 . Второй тип — топливо широкого фракционного состава (60 — 280 С), являющееся смесью бензиновой и керосиновой фракций (оте> ественное топливо Т-2, зарубежное — JR-4). Третий тип — реактивное топливо для сверхзвуковых самолетов утяжеленная керосино-газойлевая фракция с пределами выкипания 195 — 315 °С (оте> ественное топливо Т-6, зарубежное JR-6). [c.121]

    Совершенно аналогично протекают процессы однократного выкипания однородных л пдких систем, начальный состав а ,," которых заключен в интервале концентраций < х " <1. Фигу-ратпвнг.ге точкп Ь подобных систем при температуре начала ки-пелия 1 располагаются па кривой кипения ВО. Однократная перегопка таких систем при температуре промежуточной между точками начала и конца кипения, происходит точно так же, как и для систем с монотонными кривыми равновесия, и рассчитывается по тем же уравнениям. [c.126]

    Большое влияние на кипение различных жидкостей оказывает поверхностное натяжение. Однако, до настояшего времени точно определить характер этого влияния не удалось .  [c.116]

    Наконец, из изложенных выше положений о связи между химической природой твердых углеводородов нефти и их физикохимическими свойствами следует, что парафины с равной температурой плавления, но выделенные из сырья различного фракционного состава не являются равноценными по химической природе. Так, технический парафин с температурой плавления 50—52°, полученный из легкого дистиллята, выкипающего в пределах 350— 420°, может представлять в основном смесь н-алканов примерно от С21 до С27 с относительно небольшой примесью циклических и изомерных углеводородов. Но если парафин с той же температурой плавления 50—52° будет выделен тем или иным способом из более тяжелого сырья, например из дистиллята с пределами кипения 420—500° путем дробного осаждения, то такой парафин будет содержать высокий процент углеводородов циклических и изостроения. Точно так же и легкоплавкие парафины, получаемые для синтеза высокомолекулярных жирных спиртов, из концевых фракций дизельных топлив и состоящие в основном из н-алканов, совершенно пе будут идентичны легкош1авким парафинам, которые могут быть выделены из фильтратов парафинового производства при их дополнительной депарафинизации избирательными растворителями. [c.58]


    Навеску хлористого свинца помещают в мерную колбу емкостью 100 мл и растворяют в уксуснокислом аммонии, который наливают в колбу точно до метки, после чего жидкость в колбе тщательно перемешивают. Раствор в колбе нагревают до температуры кипения и в горячем состоянии титруют выдержанным 0,03 н. pa твopo молибденовокислого аммония. [c.140]

    Титр раствора устанавливают по сере, растворенной в ацетоне, для чего в коническую колбу, наливают 100 мл водно-ацетонового раствора, приливают точно 10 мл раствора серы в ацетоне, слегка перемешивают, нагревают до начала кипения, добавляют две капли раствора бромкрезолового пурпурового и титруют раствором едкого натра до синевато-фиолетового окрашивания, затем колбу с раствором вновь нагревают. При нагревании окраска раствора может стать желтой или желто-зеленой. Титрование и периодическое нагревание колбы повторяют до получения не исчезаюш,его при нагревании в течение 4—5 мин синевато-фиолетового окрашивания раствора. [c.146]

    Естественно, что у каждого структурного изомера могут быть изомеры по положению двойной связи. Наличие двойной связи делает также возможной цис-транс-шгожерто. Сырьевая смесь, взятая даже в довольно узких температурных пределах кипения, очень сложна, о составе ее сообщений не имеется. Свежее сырье смешивается с рециркулирующим продуктом и добавляется нафтенат кобальта в таком количестве, чтобы приходилось около 0,2% кобальта на общую загрузку сырья. Раствор прокачивается через подогреватель в реактор, где жидкость движется вверх в прямотоке с синтез-газом. Реактор наполняется инертным материалом типа колец Рашига и др. В реакторе поддерживаются температура около 175° и давление синтез-газа (IHj I O) 200 am. По выходе продукта из реактора давление снижается до атмосферного, затем продукт нагревается до 150° в присутствии отпаривающего газа (обычно водорода) для разрушения всего карбонила. Освобождаемый от кобальта продукт затем гидрогенизуется, в результате получается смесь октиловых спиртов. Этот процесс мало отличается от известного, но фактически он не нашел заводского использования в Германии [17]. Смесь спиртов g очень полезна в производстве пластификаторов. Окисление спиртов дает смесь кислот С 8, называемых изооктиловыми кислотами, которые представляют интерес для применения в военном деле. Состав смеси g пока точно неизвестен. Возможно, в ней содержится до двенадцати изомерных спиртов. Видимо, значительную часть составляет 3,5-диметилгексанол, получаемый из 2,4-диметилпентена-1. Другие спирты, присутствующие в относительно больших количествах — 4,5-диметил- и 3,4-диметилгек-санолы, 3- и 4-метилгентанолы. Очень возможно, что удастся найти условия превращения олефинов в спирты реакцией в одну ступень. [c.296]

    Хоуджен и Ватсон (Hougen and Watson) [254] предложили метод расчета теплоты парообразования как функцию средней температуры кипения, молекулярного веса и плотности. Для случая, когда сама плотность известна недостаточно точно, этот метод требует уточнения. Для расчета теплоты парообразования при давлении, отличном от атмосферного, Ватсон [255] предлагает метод, основанный на следующем уравнении  [c.197]

    Для растворов, которые точно подчиняются закону Рауля, кривые температура — состав могут быть построены по расчетным данным. Если же смесь дает отклонения от закона Рауля, то кривая может быть построена по опытным данным. Однако, если отклонения эти очень велики, то на кривых давление пара — состав (или температура кипения —состав) может появиться максимум или минимум в зависимости от того, положителынз1е или отри-[[ательные отклонения проявляют эти растворы. В точках максимума или минимума кривая жидкости обязательно коснется кривой пара. Такая точка, в которой состав пара и состав жидкости одинаковы, называется азеотропной точкой. Смесь кипит как одно целое, и разделить смесь иа составные части путем перегонки оказывается невозможным. [c.200]

    Точное определение температур кипения представляет значительные трудности, так как жидкость может перегреваться, а пар может охлаждаться (особенно в верхних частях прибора). Для определения температур кипения служат аппараты разной конструкции, называемые эбулиоскопами, В данной работе используется прибор (рис. 98), состоящий из сосуда / для кипячения, термометра 2 и холодильника 3. Внутренняя трубка холодильника вставлена в пробку так, чтобы холодильник можно было перевести в положение, необходимое для отбора пара. Укрепить в штативе сосуд для кипячения с 10 мл смеси известного состава. Во избежание перегрева жидкости для обеспечения равномерного кипения в сосуд помещают мелкие кусочки неглазурованного фарфора. После этого сосуд закрывают пробкой с термометром так, чтобы шарик термометра был погружен в жидкость. Затем соединяют сосуд с холодильником, в холодильник пускают воду и сосуд начинают медленно нагревать. После того, как температура нагреваемой жидко-с 1и установнгся, записывают температуру кипения, затем холодильник поворачивают в положение для отбора конденсата, т, е. открытым концом вниз, В заранее приготовленную пробирку отбирают пять-десять капель конденсата, пробирку, 1емедленно закрывают пришлифованной пробкой. Чтобы состав пробы не изменился, пробирку сле- [c.203]

    Легкость очистрш зависит непосредственно от границ кипения, фракции, т. е., иначе говоря, чем точнее проведена разгонка, тем полнее достигается очистка. Шолне очевидно, например, что в част-в ти для вышщх фракций слишком быстрая перегонка повлечет за собой захватывание асфальтоподобных продуктов, которые для своего удаления потребуют добавочного количества кислоты. [c.190]

    Уравнения, описывающие различные газовые законы, представляют собой строгие математические выражения. Измерения объема, давления и температуры, более точные, чем проводились Бойлем и Гей-Люссаком, показывают, что газы лишь приближенно подчиняются этим уравнениям. Свойства газов значительно отклоняютск от так называемых идеальных свойств, когда газы находятся под высоким давлением или при температурах, близких к температурам кипения соответствующих жидкостей. Таким образом, газовые законы, вернее законы состояния идеального газа, достаточно точно описывают поведение реальных газов только при низких давлениях и при температурах, далеких от температуры кипения рассматриваемого вещества. В разд. 3-8 мы вновь обратимся к проблеме уточнения простого закона состояния идеального газа, с тем чтобы он мог правильнее учитывать свойства реальных, неидеальных газов. [c.132]

    В отличие 01 лого при давлениях выше 5,1 атм СО2 так же плавится и испаряется, как 1Г0 происходит с водой и другими веществами, проходящими через привычную для нас жидкую фазу. Если на рис 18-6 провести горизонтальную линию при давлении 6 атм, точка ее пересечения с кривой равновесия твердая фа1а -жидкая фаза указывает температуру плавления твердого СО2, а точка пересечения с кривой равновесия жидкость-пар указывает температуру кипения жидкости при давлении 6 атм. Обитатели планеты, где нормальное атмосферное давление превышает 5,1 атм, могли бы купаться в озерах ит жидкого диоксида углерода. При давлениях выше 72,8 атм различие между жидкостью и газом исчезает и возможен только один фазовый переход -между твердой фазой и флюидом (боЛбе точное название фазы в последнем случае дать невозможно). [c.132]

    Определение молекулярного веса в зависимости от тештературы кипения более или менее точно можно произвести по формуле Воинова (678), указавшего простую формулу  [c.28]


Смотреть страницы где упоминается термин Точна кипения: [c.174]    [c.78]    [c.542]    [c.542]    [c.277]    [c.121]    [c.23]    [c.20]    [c.45]    [c.120]    [c.77]    [c.85]    [c.190]    [c.178]    [c.186]    [c.455]    [c.145]    [c.54]    [c.101]    [c.235]    [c.291]    [c.345]   
Технология минеральных удобрений (1974) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Точна



© 2025 chem21.info Реклама на сайте