Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЛКАО теория

    Теория поля лигандов (метод МО ЛКАО). Теория МО ЛКАО получила в химии координационных соединений название теории поля лигандов. В методе МО ЛКАО принимают, что электроны движутся в поле, создаваемом лигандами и центральным ионом. Молекулярную орбиталь гр можно представить как линейную комбинацию АО центрального иона (хг) и атомных орбиталей лигандов (хь ) = =Можно рассматривать линейную комбинацию АО лигандов как одну так называемую групповую орбиталь Тогда искомая МО примет вид Групповая орбиталь ли- [c.125]


    Упражнение 28-48. Рассмотрите триплетное состояние бутадиена в терминах приближения ЛКАО теории молекулярных орбиталей (рис. 28-3 и 28-7). Легче или труднее, по вашему мнению, будет происходить вращение вокруг 2,3-связи в этом состоянии по сравнению с основным состоянием Объясните. [c.482]

    ТЕОРИЯ ХИМИЧЕСКОЙ СВЯЗИ, МЕТОД МО ЛКАО [c.10]

    При изложении теории химической связи, строения и свойств молекул рассмотрены метод молекулярных орбиталей МО ЛКАО, широко применяемый сегодня в практике расчетов строения электронной структуры и реакционной способности молекул, и наиболее информативный экспериментальный метод исследования — молекулярная спектроскопия. [c.3]

    Чтобы ознакомиться с характерными особенностями метода МО ЛКАО, рассмотрим приближенное решение для Н2. При этом теория простейшей молекулы Нг послужит исходным пунктом для теории более сложных молекул, как теория атома Н —для теории многоэлектронных атомов. [c.62]

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]

    ЭЛЕМЕНТЫ КВАНТОВОЙ ХИМИИ. ТЕОРИЯ ХИМИЧЕСКОИ СВЯЗИ, МЕТОД МО ЛКАО [c.8]

    Детальное изложение теории МО ЛКАО приведено в книгах [86—91], которые написаны крупными специалистами в области квантовой химии. Определению электронной структуры систем с сопряженными связями посвящены монографии [91—94], расчеты электронной структуры насыщенных соединений обсуждаются в [75, 84, 86], специально вопросам реакционной способности молекул и радикалов посвящены работы [72—75, 84, 86, 95], вычислительные методы в квантовой химии и их реализация на ЭВМ изложены в работах [79, 96]. [c.55]


    Весьма подробная информация о механизме реакции (18.1) может быть получена путем расчета поверхности потенциальной энергии. Заметный прогресс в этом направлении наметился в последнее время в связи с упомянутыми выше работами Базилевского, где обращается внимание на то, что применение полуэмпирических вариантов метода МО, явно не учитывающих неортогональность базисных функций (например, метод Хюккеля и др.), не позволяют дать правильную картину взаимодействия реагентов. На основе таких методов удается объяснить лишь притяжение между ними (этот эффект является наиболее существенным, когда расстояния между атомами частиц незначительно превосходят равновесные). Между тем при расстояниях, которые значительно превосходят равновесные, но меньше радиуса действия сил Ван-дер-Ваальса, наблюдается отталкивание между частицами. Это отталкивание можно описать, принимая во внимание неортогональность базисных функций. Поэтому во всех вариантах метода МО, где неортогональность явно не учитывается, не учитывается и эффект отталкивания. Последовательный учет неортогональности АО в методе МО ЛКАО в л-электронном приближении позволил Базилевскому представить потенциальную энергию реагентов в виде суммы, учитывающей энергии притяжения и отталкивания между ними, причем слагаемые этой суммы вычисляются в рамках теории МО при любом расположении атомов исходных частиц. Определение функции (2.3) является основой расчета кинетических параметров А к. Е. [c.177]

    Происхождение и величину градиентов электрических полей на ядрах атомов в молекулах приближенно объясняют с точки зрения характера химических связей и распределения электронной плотности в рамках теории МО ЛКАО. В молекулярных кристаллах основной вклад в градиент поля на ядре дают валентные электроны рассматриваемого атома, а в простейшем подходе Таунса и Дейли для таких атомов, как и галогены, показывается, что градиент создают главным образом р-электроны валентной оболочки. Исходное положение этого подхода состоит в том, что градиент электрического поля в направлении г (например, совпадающем с направлением связи, см. рис. IV.2) в молекуле е мол можно выразить через градиент электрического поля в свободном атоме е<7ат в виде линейного соотношения  [c.105]

    Для упрощения расчетов по методу МО ЛКАО в теории комплексных соединений, как и в ряде других задач, используют учет особенностей симметрии атомных орбиталей. Дело в том, что не всякие атомные орбитали, даже обладающие близкими энергиями, составляют молекулярную орбиталь — образуют химическую связь. Помимо близости энергий АО необходимо, чтобы они обладали одинаковой симметрией. На рис. 106 показано наложение 5- и р -атомных орбиталей. При этом Р ,-орбиталь расположена перпендикулярно линии, соединяющей центры атомов (ось г). Хотя происходит взаимное наложение орбиталей, однако интегралы перекрывания и обменный в данном случае равны нулю — вклад наложения положительной части ру-орбитали уничтожается противоположным по знаку вкладом отрицательной части — 5- и ру-орбитали обладают различной симметрией относительно вращения вокруг оси г. При повороте на 180° ру-орбиталь меняет знак, а -орбиталь не меняет. Кроме того, -орбиталь совмещается сама с собой [c.226]

    И получил очень хорошее согласие данных теории и опыта. Эта функция вызывает особый интерес, так как не основана на методе ЛКАО и нет необходимости в концепции о резонансе. [c.153]

    Расчеты молекулярных характеристик в методе МОХ. Объяснив особые свойства ароматических соединений их электронной структурой, теория МО ЛКАО устанавливает корреляции (соответствия) между характеристиками МО и свойствами молекул. Например, как видно из рис. 70, рассчитанному в методе МОХ порядку связи в бензоле 1,667 отвечает длина связи 1,4 м, что находится в хорошем согласии с экспериментом (1,399 м). [c.234]

    Таким образом, ТПЛ (метод МО ЛКАО) отражает реальное существование определенной ковалентности связи в комплексных соединениях. Достигая тех же результатов, что и ТКП, метод МО ЛКАО превосходит ее, учитывая возможности образования других связей, помимо чисто электростатических. Поэтому в теории поля лигандов получила объяснение химическая связь не только в ионогенных, но и в таких координационных соединениях, как соединения металлов с олефинами, в карбонилах металлов, сэндвичевых и других соединениях, где лигаНды — малополярные или неполярные молекулы и поэтому электростатическая природа связи металл — лиганд исключается. [c.250]

    Теория поля лигандов. Метод молекулярных орбиталей в приближении МО ЛКАО применительно к рассматриваемым соединениям называется теорией поля лигандов. [c.120]

    При использовании метода МО ЛКАО получается больше МО, чем требуется для построения функции основного состояния. Поскольку все орбитали являются решениями одного и того же уравнения, лишние МО можно использовать для построения, функций возбужденных состояний, которые используются в теории возмущений. [c.138]


    Подробное рассмотрение молекулы водорода в рамках теории МО ЛКАО и детальное рассмотрение роли кинетической энергии в образовании химической связи двухатомных молекул. [c.154]

    Молекулярные орбитали многоатомных молекул являются в общем случае многоцентровыми функциями, включающими в приближении ЛКАО МО атомные орбитали нескольких атомов. Такое описание не связано прямо с понятием химической связи в структурной теории, где связь представляет собой локальное свойство, относящееся к двум соседним атомам. [c.137]

    Строгое и последовательное приложение ММО к металлам приводит к зонной структуре энергетического спектра электронов в них. В действительности металлы характеризуются не столько металлической связью, сколько металлическим типом зонной структуры, в которой отсутствует запрещенная зона. Причем с позиций -Мо ЛКАО можно трактовать особенности химической связи не только в металлах, но и в полупроводниках и диэлектриках, хотя еще недавно теория строения этих веществ считалась областью фи- [c.128]

    Приближение МО ЛКАО. С позиций теории МО молекулу рассматривают в качестве сложного, многоядерного атома , к которому приложимы все квантово-механические законы. Каждый энергетический молекулярный уровень имеет определенный набор квантовых ячеек, как и в обычном одноядерном атоме. Это означает, что валентный слой молекулы может быть представлен либо одной связывающей квантовой ячейкой с максимальной емкостью [c.286]

    Итак, на примерах молекул главным образом водородистых соединений элементов второго периода кратко изложено содержание теории МО в приближении ЛКАО, предложенного Р. Малликеном. В настоящее время эту теорию считают лучшим способом трактовки химической связи, хотя по наглядности она уступает теории ВС, основы которой заложены в работе Гейтлера и Лондона. [c.317]

    Таким образом, все выводы, полученные в теории кристаллического поля на основе параметра расщепления и ЭСКП, остаются в силе и в теории поля лигандов. Вместе с тем как метод МО ЛКАО теория поля лигандов более общая и имеет несомненные преимущества. Она объяснила образование связи не только в комплексах ионогенного типа, но и в таких координационных соединениях, как карбонилы металлов, сэндвичевых и др. [c.123]

    Решение уравнений Рутана сложная и не всегда выполнимай задача. Наибольшие трудности связаны с расчетом молекулярных интегралов. Такая ситуация не могла не стимулировать поиск полуэмпирических решений, в которых вместо трудно рассчитываемых в теории величин используют опытные данные. Метод ССП МО ЛКАО, с одной стороны, является основой построения более простых полуэмпирических и качественных методов расчета электронной структуры различных соединений. В частности, методы Хюккеля и Гоф )мана, как и другие более совершенные полуэмпирические методы, являются следствием теории Рутана [33, 86]. С другой стороны, на базе теории Рутана создаются более общие теории многоэлектронных систем [87]. Оба эти обстоятельства указывают на [c.54]

    В последнее время в теории координационных соединений получили развитие полуэмпирические методы МО ЛКАО, в которых наиболее сложные для вычислений интегралы аппроксимируются известными из опыта данными. Наиболее широкое распространение получил полуэмпирический метод Малйкена — Вольфсбергера — Гельмгольца. В этом методе удалось удовлетворительно объяснить качественные особенности спектров многих координационных соеди-не]шй, как, например, тетраэдрических окси-анионов переходных металлов и других комплексов. [c.49]

    Соотношения (111.73) и (111.74) по форме записи аналогичны уравнениям (111.-54) и (111.55), фигурирующим в теории Гейтлера и Лондона, которую мы будем сокращенно обозначать ГЛ. Однако физический смысл формул и численные значения Е в методах ГЛ и МО ЛКАО разные. В первом рассматривается двухэлектронная задача, во втором — одноэлектронн ая. Фигурирующие в уравнениях этих теорий интегралы только при самой общей форме записи выглядят [c.187]

    Метод Хюккеля. В последние 10—15 лет метод молекулярных орбиталей был применен для расчета характеристик очень многих молекул. Он широко пронру< даже в такие отрасли знания, где несколько десятилетий тому назад сама мысль о возможности использования квантовой механики казалась не заслуживающей внимания фантазией,— в теорию органических, реакций, биохимию, молекулярную биологию. Особенно широкое распространение в указанных областях получил вариант МО ЛКАО, предложенный Э. Хюккелем. [c.193]

    С возникновением квантоЕЮЙ механики электростатическая теория послужила основой так называемой теории кристаллического поля, учитывающей наряду с электростатическим взаимодействием квантовомеханические особенности С1 роения электронной оболочки центрального иона. Теоретическое исс.тедование комплексных соединений проводилось и проводится так же на основе метода ВС и метода МО ЛКАО. Так как метод ВС оказался наименее пригоден для описания свойств комплексных соединений, здесь будут рассмотрены основные идеи теории кристаллического поля и метода МО ЛКАО.  [c.237]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Приближение ЛКАО для поиска вида МО q>i и представление полной волновой функции молекулы в виде слэтеровского определителя (4.59) ведет в рамках метода Хартри—Фока с использованием гамильтониана (4.4) к уравнениям, полученным впервые в 1951 г. Рутааном, Эти уравнения являются приближением к уравнениям Хартри—Фока и лежат в основе почти всех современных неэмпирическик методов расчета сложных молекулярных систем. Они служат также исходными для развития всех основных полуэмпирических теорий метода МО. [c.111]

    Все расчеты многоатомных молекул основаны на приближенных решениях уравнення Шрёдингера (4.3). Практика предъявляет два главных требования к уровню приближения и выбору расчетной схемы. Это, во-первых, достаточное соответствие результатов расчета результатам эксперимента и, во-вторых, достаточная экономичность расчетов, т. е. разумные затраты времени при выполнении их на быстродействующих ЭВМ. Из двух основных теорий химической связи — метода валентных связей и метода молекулярных орбиталей — последний имеет значительные преимущества при реализации на ЭВМ. Поэтому все основные расчетные методы современной квантовой химии используют приближение МО в форме схемы ЛКАО МО Хартрн—Фока—Рутаана (см. разд. 4.3.3). В рамках этой схемы возможны как дополнительные усовершенствования расчетной модели (учет эффектов электронной кор- [c.203]

    Выше мы проследили за тем, при каких условиях и допущениях уравнения метода ЛКАО МО Рутаана могут быть приведены к простому виду (7.35), (7.36), известному как уравнения метода МО Хюккеля (МОХ). Эти уравнения были получены Хюккелем еще в 1931 г. совершенно иным путем, построенным на ассоциациях с формализмом теории Слэтера и Блоха для описания поведения электронов в металле. Однако основной идеей метода, не вытекающей из какой-либо теоррй , является впервые введенное представление о возможности раздельного рассмотрения а и я-электронов, что определяется различиями в симметрии их орбиталей. Лишь значительно позже были даны теоретические обоснования а, я-разделе-яия, которых мы коснулись в гл. 7. [c.212]

    В соответствии с методом МО ЛКАО молекула СО2 описывается той же формулой, что и в теории ОЭПВО, тогда как XeF2 [c.171]


Смотреть страницы где упоминается термин ЛКАО теория: [c.128]    [c.128]    [c.251]    [c.127]    [c.169]    [c.127]    [c.188]    [c.135]   
Теоретическая неорганическая химия (1971) -- [ c.139 , c.238 , c.255 ]




ПОИСК





Смотрите так же термины и статьи:

ЛКАО

Многоатомные системы в одноэлектронной теории и идея метода ЛКАО

Объяснение о- и я-трансвлияния в рамках теории МО ЛКАО

Приближение МО ЛКАО в теории молекул

Теория валентных связей линейных комбинаций атомных орбиталей ЛКАО

Элементы квантовой химии. Теория химической связи, метод МО ЛКАО



© 2025 chem21.info Реклама на сайте