Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо хромистых сталях

    Хром — один из самых твердых металлов, на воздухе совершенно не изменяется. Поэтому хромом с помош,ью электролиза его соединений покрывают — хромируют — стальные изделия для предотвращения их механического износа и ржавления. Эти же качества хром придает своим сплавам с железом — хромистым сталям. К ним относится нержавеющая сталь, содержащая около 12% хрома. Блестящие серебристого цвета листы нержавеющей стали украшают арки станции Маяковская Московского метрополитена. В быт нержавеющая сталь вошла в виде вилок, ножей и других предметов домашнего обихода. [c.152]


    Чернова и Томашов [13], изучавшие анодное растворение железа, хромистых сталей (25% Сг), легированных никелем или молибденом (0,5%), показали, что в этом случае наблюдается логарифмическая зависимость скорости растворения от потенциала с коэффициентом Ь" = = 0,05 0,10. Иофа и Вэй Бао Мин [14] при исследовании процесса растворения кобальта в серной кислоте установили, что Ь = 0,10- 0,18, а Ь" =0,026- 0,042. [c.29]

    Повышение жаростойкости железо-хромистых сталей при легировании иттрием наблюдается также и при испытаниях в углекислом газе [118]. Константа скорости окисления для сплава Ре —25% Сг при 1000°С равна 2-10 , а для сплава Ре —25 /о Сг—1% У — Зх ХЮ- 2 гУ(см -сек ). [c.83]

Таблица 32 Значения коэффициента изменения жаростойкости у для железо-хромистых сталей при различных темтературах (на воздухе) [119, 120] Таблица 32 <a href="/info/90718">Значения коэффициента</a> изменения жаростойкости у для железо-хромистых сталей при различных темтературах (на воздухе) [119, 120]
    Кинетика окисления железо-хромистых сталей на воздухе [119, 120] [c.85]

    Из полученных данных также следует, что наличие иттрия в железо-хромистых сталях существенно изменяет механизм процесса окисления. Если при окислении железа и стали Х5 процесс контролируется диффузионной стадией п 2), то при введении в них добавок иттрия лимитирующей стадией процесса становится кинетическая (пл 1). [c.87]

    По теории, предполагающей образование на поверхности сплава защитного окисла легирующего компонента [124—126], также нельзя объяснить повышение жаростойкости железо-хромистых сталей, легированных иттрием, так как иттрий имеет слишком большой ионный радиус по сравнению с железом и хромом. [c.90]

    Известно, что иттрий склонен к образованию сложных окислов типа шпинелей с окислами различных металлов, в том числе с окислами хрома, молибдена и циркония. Резкое уменьшение скорости окисления сплавов при появлении в окалине окислов хрома авторы работы [119] связывают именно с образованием таких сложных окислов хрома и иттрия типа шпинелей. Из вышеизложенного следует, что иттрий повышает жаростойкость железо-хромистых сталей и сплавов на основе хрома, окисная пленка которых состоит из окисла хрома СггОз или двойных окислов типа шпинелей. [c.93]

    В виде примера вычислим состав коррозионностойкой хромистой стали, содержащей / атомной доли хрома в твердом растворе. Атомный вес железа равен 55,85, хрома — 52,01, и = 1  [c.127]


    В некоторых случаях наличие примесей в сплаве, в частности углерода в хромистых сталях, склонного к образованию карбидов хрома и железа, вызывает необходимость увеличения содержания легирующего элемента па то количество, которое расходуется па образование этих карбидов, с таким расчетом, чтобы содержание хрома в [c.128]

    При восстановлении хромистого железняка углем получается сплав хрома с железом — феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Для получения чистого хрома сначала получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом. [c.511]

    Растворение металла по химическому механизму необходимо учитывать не только при разложении амальгам щелочных и щелочноземельных металлов. В работах Я. М. Колотыркина и сотр. было показано, что растворение железа, хрома и хромистых сталей, марганца в кислых растворах частично протекает по химическому механизму, особенно при повышенных температурах. [c.371]

    При этом образуется сплав железа и хрома (феррохром) с содержанием 50—70% хрома. Феррохром применяют при изготовлении хромистых сталей. [c.511]

    Массовое содержание хрома, молибдена и вольфрама в земной коре оценивается в 2-10 , 1-10 и 7-10 % соответственно. Хром встречается в природе главным образом в виде хромистого железняка РеО-СггОз, при восстановлении которого углем получают сплав железа с хромом — феррохром, используемый в металлургии при производстве хромистых сталей. Чистый хром получают методом алюмотермии. Наиболее распространенным соединением молибдена является минерал молибденовый блеск МоЗг, из которого получают металл в виде порошка. Компактный молибден (и компактный вольфрам) получают методом порошковой металлургии прессование порошка в заготовку и спекание заготовки. [c.321]

    Преимущественное растворение того или иного компонента из сплава не всегда определяется термодинамикой, иногда решающее значение оказывают кинетические особенности процесса. Так, твердые растворы системы Ре — Сг (хромистые стали Х13, Х18) в серной кислоте при потенциалах отрицательнее (рис. 118) растворяются преимущественно за счет менее благородного хрома. Поверхностный слой обогащается железом. При потенциалах положительнее ф хромовая составляющая пассивируется и преимущественно уже растворяется железо, а хром накапливается в поверхностном слое. Когда концентрация хрома достигает определенных значений, зависящий от концентрации кислоты, ее аэрации, температуры и т. д., происходит пассивирование сплава. При потенциалах положительнее фг вновь преимущественно растворяется хром. [c.214]

    По мнению некоторых исследователей, для сернокислых растворов такое явление, связанное с образованием сульфатов растворяющихся металлов, наблюдается не только при растворении железа [7,671, но и при растворении никеля [ 68,691. На хроме солевые защитные слои при потенциалах вблизи не образуются [ 8]. В полном согласии с этими результатами для хромистых сталей появление предельных токов рассматриваемой природы характерно только при содержании хрома в сплаве ниже некоторой критической концентрации, для которой в литературе приводятся значения 6,7% [ 70 1, 10% [ 71] и 13% [c.15]

    Электрохимическое поведение пассивных сплавов железа с хромом и никелем коррелирует с поведением составляющих их металлов. Так, для хромистых сталей установлено снижение количества электричества, необходимого для пассивации, с ростом содержания в них хрома до некоторой критической величины (12-14%) [70,114], Аналогичные результаты были получены для сплавов же-лезо-никель, критическое содержание никеля в которых соответствует 30% [ 114 ]. Эти результаты согласуются с заключением о более тонких пассивирующих слоях на хроме и никеле по сравнению с железом. [c.26]

    Показано, например [ 66,99 ], что растворение пассивных хромистых сталей в серной кислоте происходит с преимущественным переходом в раствор железа, благодаря чему имеет место обогащение поверхностной пленки хромом. По данным [99], в результате такого обогащения на поверхности сплава может образоваться слой, коррозионная стойкость которого может на 3-4 порядка превосходить стойкость поверхностного слоя исходного состава. На возможность обогащения хромом поверхности пассивных нержавеющих сталей указывается также в работах [117, 119]. [c.27]

    Поведение хромоникелевых сталей в области потенциалов, соответствующей перепассивации хрома и никеля, зависит от их состава. Бинарные сплавы Ге—Сг не подвергаются перепассивации, если содержание в них хрома остается ниже 13% [51]. Сплавы с более высоким содержанием хрома равно как и сплавы, содержащие никель, подвержены перепассивации [122, 129], причем одновременно появляется и область вторичной пассивности [51,54]. При этом, судя по величинам предельных токов, хромистую сталь тем труднее перевести в область вторичной пассивности, чем выше в ней содержание хрома (рис. 13). Последнее несомненно является логическим следствием отмеченных выше различий в поведении железа и хрома в рассматриваемой области потенциалов, [c.28]


    Аналогично железу, хрому и никелю пассивируются высоколегированные хромистые и хромоникелевые стали. На рис. 8 приведены типичные поляризационные кривые хромистой стали. Определяющим элементом является хром стали с содержанием хрома менее 10 % по своим свойствам ближе к железу, тогда как стали с содержанием 15 "/о и более ближе к хрому. [c.33]

    Известно [ 59, 60], что в хромистых нержавеющих сталях отсутствие железо-хромистых карбидов достигается, когда концентрация титана в 5—6 раз больше концентрации углерода (для ниобия это соотношение составляет 10 - 12). Примем в расчетах Ti/ = 5,5. При меньших значениях Ti/ углерод соединяется не только с титаном, но с хромом и железом. Для этих случаев количество углерода, связанного в железохромистые карбиды ( pf, %) можно приближенно определить по формуле Ссг = Со - (Tig - Tij )/5,5, где С - суммарное содержание углерода в сплаве Tig - суммарное содержание титана в сплаве, % Ti — количество титана, связанного с азотом, %. [c.99]

    В водных растворах карбамида углеродистая сталь подвергается коррозионному разрушению (табл. 7.14). Скорость коррозии углеродистой стали в растворах карбамида концентраций 1—92% в интервале температур 30—115°С может составить 0,15— 0,68 мм/год. При испытаниях образцов углеродистой стали отмечается интенсивное окрашивание раствора в бурый цвет, что свидетельствует о загрязнении его солями железа. Хромистая сталь Х5М также подвергается коррозии в растворах карбамида. Достаточную коррозионную стойкость в растворах карбамида различной концентрации (до 92%) при температурах до 115°С, включая условия концентрирования карбамида, имеют стали 0X13, Х18Н10Т, Х21Н5Т. В растворах концентрации до 60% и температурах до 70 °С кроме указанных сталей стойка и хромистая сталь Х8. [c.250]

    Электрохимические выпрямители. Алюминий, тантал и некоторые другие металлы обладают свойствами вентиля, если их поместить в определенные раство-рьг. При работе выпрямителя на его поверхности образуется пленка. Пленка проницаема для водородных катионов и непроницаема для анионов, исключая анионы, разрушающие пленку. Ток может проходить только в направлении на электрод вентиля, в обратном направлении, если пленка не пробита высоким напряжением, ток не проходит. В дополнение к электроду вентиля каждый элемент должен иметь второй электрод, служащий анодом. Он должен бьить рассчитан на работу в высококоррозийной среде и пропускать ток в любом направлении. Для этой цели обычно применяют свинец, уголь, железо, хромистую сталь и кремниево-железные сплавы. Танталовые выпрямители, применяемые в устройствах железнодорожной сигнализации, содержат катод из металлического тантала и анод из свинца или свинцовых сплавов, помещенные в раствор серной кислоты с небольшой добавкой сульфата железа. Удельный вес электролита около 1,250. [c.307]

Рис. 296. Зависимость потери массы хромистых сталей от времени в расплаве Na l при 870 С J — железо-армко 2 — сталь У9 3 — сталь 20Х 4 — сталь 20X3 5 - сталь 2X13 6-сталь X8 7 — сталь X17 Рис. 296. <a href="/info/398446">Зависимость потери</a> массы <a href="/info/122313">хромистых сталей</a> от времени в расплаве Na l при 870 С J — <a href="/info/121765">железо-армко</a> 2 — сталь У9 3 — сталь 20Х 4 — сталь 20X3 5 - сталь 2X13 6-сталь X8 7 — сталь X17
    При решении вопроса о допустимости контакта между металлами можно также рукоиодствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,и1гк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромоиикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро. [c.182]

    Железо и никель, обладая взаимрюй растворимостью, дают непрерывный ряд твердых растворов. Никель способствует образованию сплавов с неограниченной -у-областью. Железоникелевые сплавы устойчивы в растворах серной кислоты, щелочей и ряда органических кислот. Однако железоникелевые сплавы не нашли широкого применения в качестве конструкционных материалов в химическом машиностроении, так как они не имеют особых преимуществ по сравнению с хромистыми сталями. [c.218]

    Растворение металла по химическому механизму необходимо учитывать не только при разложении амальгам щелочных и щелочноземельных металлов. Растворение железа, хрома и хромистых сталей, марганца в кислых растворах частично протекает по химическому механизму, особенно при повышенных температурах (Я. М. Колотыр-кин и сотр.). Необходимым условием химического механизма является хемосорбция окислительного компонента раствора, при которой в определенных условиях реакция растворения металла может происходить и без освобождения электронов непосредственно в одном акте с реакцией восстановления. При растворении металла по химическому механизму можно в первом приближении ожидать отсутствия зависимости между скоростью растворения и потенциалом. Кроме того, важным признаком химического механизма является несоответствие между скоростью растворения и величиной анодного тока, пропускаемого через электрод скорость растворения, найденная, например, аналитическим методом, оказывается больше,чем соответствующая пропускаемому току. На рис. 186 показаны поляризационные кривые, измеренные на стали в растворе серной кислоты, и полученная аналитически зависимость скорости растворения той же стали от потенциала. Скорость растворения стали значительно превосходит ожидаемую из величин анодного тока и не зависит от потенциала. Это указывает на химический механизм растворения хромистой стали в серной кислоте при повышенных температурах. [c.353]

    В ЭТОМ процессе железо и хром выделяются в форме сплава — феррохрома, который дальше не разделяют, а используют непосредственно в качестве добавки в сталь при получении хромистых сталей. Чистый хром может быть получен восстановлением его окиси СГ2О3 методом алюминотермии по реакции [c.142]

    Ниобий используется в виде порошка, жести, проволоки и т. д. Металлический ниобий применяется в радиотехнике при изготовлении электронных ламп — из него готовят нити накала, электроды в электролитических выпрямителях и т. д. Большое значение он имеет в сплавах. Карбиды ниобия совместно с карбидами Та, Ш или Мо используются для изготовления твердых режущих сплавов. Ниобий оказывает на вязкость стали большее влияние, чем V, Ш, Сг и Мо полагают, что в быстрорежущих сталях 6—12% ЫЬ могут заменить 12—20% . По данным Беккета и Френкса, ниобий в хромистой самозакаливающейся стали переводит углерод в твердый раствор и тем самым способствует получению стали в виде тонких, мягких и легко поддающихся горячей обработке листов. Ниобий в стали с большим содержанием хрома уменьшает время отжига, необходимое для улучшения пластических свойств стали. Добавка ниобия к хромистым сталям с содержанием хрома меньше 12% увеличивает их коррозионную устойчивость даже при высоких температурах, так как углерод лучше соединяется с ниобием и тем самым способствует образованию пассивированного хрома. Ниобий вводится в стали в виде феррониобия после раскисления перед отливкой детали. До использования ниобия в кораблестроении цельносварные корпуса морских судов не могли считаться прочными, так как сварные швы подвергались сильной коррозии в морской воде. Присадка к сварочному железу небольших количеств ниобия защитила сварные швы от коррозии и способствовала созданию цельносварных морских судов. [c.307]

    При этом железо с хромом образует сплав —феррохром, который широко используют для изготовления хромистой стали. Для получения чистого хрома хроми-гтый жрлечняк сплавляют с карбонатом натрия в присутствии кислорода воздуха с последующим восстанови лением образовавшегося хромата натрия углем  [c.473]

    Введение в сплавы на основе железа,кроме хрома, еще и никеля в количестве 10 % и более переводит структуру сталей из феррит-ной (присущей хромистым сталям) в более галогенную (а значит-и более коррозионноустойчивую) аустенитную. Никель придает сплаву также более высокие пластические свойства при сохранении прочностных характеристик и повышает пассивирующую способность в депассивирующих средах едких щелочей, расплавах солей и др. [c.93]

    Введение в твердый раствор никеля придает хромистым сталям более высокую химическую стойкость как за счет образования пассивной пленки оксида никеля, так и за счет перевода стали в более гомогенную (и, следовательно, в более коррозионностойкую) аустенитную структуру. Наряду с повышением коррозионвой стойкости никель способствует повышению пластичности, ударной вязкости, жаростойкости, а при использовании его в качестве основы вместо железа - и жаропрочности сплавов. В качестве аустенитообразующих элементов используют также азот, марганец, медь и кобальт. [c.14]

    Самой высокой коррозионной устойчивостью в расплавленном свинце обладают тантал и ниобий. Железо, углеродистая сталь, хромистые и хромоникелевые стали имеют хорошую устойчивость до 500—600°С. При более высоких температурах она понижается, так как наблюдается растворение преимущественно по границам зерен. Стали перлитного типа устойчивы к действию свинца при температурах до 600°С. Хромистые нержавеющие стали ферритного и мартенсигного типов (1X13, Х17) обладают высокой коррозионной устойчивостью до 540°С. [c.90]

    Для хромоникелевых сталей с содержание.м хрома до 20% достаточно 8-10% N1, для перевода структуры ста11и из ферритной (характерной для хромистых сталей) или аустенито-ферритной (содержащей N1 до 8%) в более гомогенное аустенитное состояние во всем диапазоне температур, вплоть до плавления. Это обеспечивает меньщую склонность к росту зерна, лучшие механические свойства, эффективно понижает порог хладноломкости, делает сталь более коррозионностойкой. Никель, так же, как и хром, образует с железо.м твердые растворы при всех пропорциях компонентов, поэтом сталь легко пассивируется на воздухе, обеспечивая высокую коррозионную стойкость в слабоокисляющих и неокисляющих растворах, В соответствии со структурой и содержанием основных легирующих элементов (-18% Сг и от 8 до 10% N1) такие отечественные стали принято соответственно называть аустенитные хромоникелевые коррозионностойкие (нержавеющие) стали типа 18-8, 18-9, 18-10 , а в сокращенном современном варианте - стали типа 18-10 , [c.82]

    Химический механизм обнаружен при растворении железа, хрома, никел алюминия, хромистых сталей в растворах различных кислот [27—33]. Скорост химического растворения железа в кислых средах зависит от pH раствора и содержания примесей в железе (с уменьшением pH и увеличении примесей скорость химического растворения увеличивается) и не зависит от природы и концентрации анионов раствора [27—29 32, 34]. Химическое растворение железа наблюдается в спиртовых (метаиольных, этиленгликольных) растворах хлористого водорода [32, 34]. В [35] дан подробный обзор по химическому растворению металлов. [c.18]

    Склонность к межкристаллитной коррозии у высокохромистых нержавеющих сталей (Сг > 17 %, С > 0,025 %) проявляется после ускоренного охлаждения с высоких температур (1000-1100 °С) и обусловлена выделением в границах зерен сталей карбидов хрома, приводящим к обеднению по этому элементу зернограничного твердого раствора. Протекающая в ряде сред, например, в растворах (Н2804 + СиЗО ) или (НзРО.) + Си804), межкристаллитная коррозия этих сталей является следствием резкого снижения анодной поляризации границ зерен и сопровождается переходом в раствор только железа. Склонность к межкристаллитной коррозии у хромистых сталей можно ликвидировать повторным нагревом до 600-800 °С. Такой нагрев приводит к завершению выпадения карбидов и коагуляции выпавших ранее карбидш>1х частиц, к обогащению границ зерен хромом в результате его диффузии и снятию внутренних напряжений, возникших в процессе выделения карбидных включений из твердого раствора стали при ускоренном охлаждении от 1 ООО °С и более. [c.94]

    Алюминиевые сплавы подвержены местной коррозии. При аэрировании раствора резко возрастает скорость коррозии медн. Имеются сведения о взрывном характере взаимодействия мо-нелЬ Металла с азотнокислым аммонием. Для изготовления технологического оборудования при нормальной температуре могут использоваться зтлероди-стые стали, серый н хромистый чугун ы. Железо и стали при температурах >60° С под напряжением подвержены сильному коррозионному растрескиванию в концентрированных растворах соли. Путем термической обработки сварной аппаратуры снимают напряжения. возникшие при сварке, такая обработка уменьшает склонность сталей к крррозионному рас трескивайню, [c.810]

    В водных растворах солн алюминиевые сплавы подвержены точечной корро> ЗИН, иногда даже скввзной-В условиях аэрации рао твора коррозионная стойкость медн и никеля при температурах >100° С значительно снижается. При наличии в растворе окислителя латуни склонны к коррозионному растрескиванию под напряжением. Хромистые стали и сталь Х18Н9Т в растворе 45% (ЫН4)2804-Ь5% НзЗО при температуре >60 С совершенно нестойки. Имеются сведения о высокой коррозионной стойкости никель-медных сплавов типа мо-нель-металла в растворах соли любой концентрации до температуры кнпення. Вследствие гидролиза. олн с повышением температуры усиливается опасность мест-нвй коррозии железа и сталей. [c.811]


Смотреть страницы где упоминается термин Железо хромистых сталях: [c.261]    [c.310]    [c.811]    [c.843]    [c.29]    [c.40]    [c.214]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Железо хромистая

Сталь хромистая



© 2025 chem21.info Реклама на сайте