Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции вторичные области

    При температуре и давлении, лежащих вне области горения, в смеси идет окислительная реакция (медленное окисление), в ходе которой, кроме воды и углекислого газа, образуются продукты неполного окисления, а также продукты крекинга. Реакция медленного окисления внешне проявляется в увеличении давления, которое становится измеримым к концу периода индукции. При проведении реакции внутри области холодного пламени на плавный рост давления в определенные моменты времени накладываются резкие пики, обусловленные повышением температуры в момент вспышки холодного пламени. Три таких пика (отвечающих трем последовательным холодным пламенам пропилена) видны на кривой роста давления, показанной на рис. 142. Как видно из рисунка, холоднопламенные процессы, накладываясь на реакцию медленного окисления, на короткий промежуток времени нарушают плавный ход этой реакции. Отсюда можно сделать вывод, что холодное пламя представляет собой некоторое вторичное явление, возникающее в процессе развития реакции медленного окисления [277, 387]. [c.484]


    Применение описанного выше принципа изучения механизма медленных реакций впервые позволило подойти к прямому опытному определению самой медленной стадии сложного процесса — реакциям зарождения цепи. Чтобы исключить возможность вторичных реакций первично образовавшихся активных частиц, давление реагирующей смеси поддерживалось равным сотым или даже тысячным долям тора. Опыты показали, что имеется два механизма зарождения цепей низкотемпературный — гетерогенный и высокотемпературный — гомогенный. Нами были определены механизмы зарождения цепей в смесях На + Оа, КН Оа и энергии активации соответствующих процессов. Установлено, что в ходе окисления водорода и ряда предельных углеводородов основными реакциями в области как гомогенного, так и гетерогенного зарождения цепей являются [c.149]

    ВОДИЛИСЬ, для детального изучения химизма протекающих при модификации белков процессов. Как следствие этого мы обнаруживаем пробел в науке о белке, т. е. пока не имеется детальных и всесторонних знаний о белке с точки зрения органической химии, хотя известно, что белки вступают в большое число разнообразнейших реакций. Эта область исследования белков — очень плодотворное поле деятельности для исследователя, обладающего смелостью, неослабным терпением и большой изобретательностью, который к тому же способен скрупулезно вникать в детали и непоколебимо верить в имеющуюся в конечном счете возможность разрешить сложную задачу установления точного строения и реакционноспособ-ности этого важнейшего класса очень сложных природных полимеров. В настоящее время, когда достигнуты большие успехи в выяснении последовательности аминокислот во многих белках и в определении вторичной и третичной структуры этих полимеров, химики-органики имеют в своем распоряжении доступные материалы, которые могут быть использованы в качестве удобных моделей для изучения специфических химических и биологических модификаций, механизма этих процессов и других аспектов структуры и реакционноспособности белков. В течение последнего десятилетия наметились большие успехи в этой области, основу для которых предоставили уже исследованные вещества, использованные в качестве моделей. [c.331]

    Рентгеновские лучи обладают сильным химическим действием, однако химическая специфика его, по-видимому, большей частью обусловлена вторичными процессами. Первичными же являются процессы отделения электронов, часто сопровождающиеся разрушением связей между атомами в молекулах с образованием свободных радикалов и валентно ненасыщенных атомов. Последующие превращения нередко приводят к выделению электромагнитных колебаний ультрафиолетовой области или области видимого света, вызывающих своим действием новые уже фотохимические реакции. Образование же свободных радикалов и атомов может приводить к той или другой цепи последующих превращений. [c.551]


    Очень жесткие требования по термостойкости и термостабильно-сги предъявляются к катализаторам вторичного реформинга (паровоздушной конверсии газа из трубчатой печи). Они должны быть механически прочными и не терять активности до 1100-1200°С. При рабочих температурах (900-П00°С) скорость реакция очень высокая и процесс идет в глубокой диффузионной области. В этих условиях высокая активность катализатора не является главным фактором качества катализатора. Первостепенную роль играют его механические свойства. [c.37]

    Особенностью каталитического крекинга является то, что выход продуктов определяется в первую очередь конверсией сырья независимо от массовой скорости подачи сырья и кратности циркуляции катализатора, при которых она была достигнута [22, 31, 38]. В области небольшого вклада вторичных реакций выход продуктов прн постоянной конверсии сырья практически не зависит и от температуры крекинга [31]. Таким образом, для данного катализатора и сырья имеются вполне определенные соотношения выхода продуктов независимо от условий процесса (рис. 4.33). Это позволяет изучить влияние различных факторов на результаты крекинга при равной конверсии сырья. [c.135]

    Практически образование олефинов становится заметным при температурах выше 600° (гл. 12). Ароматические углеводороды образуются в той же области температур, т. е. при 600° и выше. По-видимому, они получаются главным образом в результате конденсации олефинов с диолефинами. Их образование можно подавить, если проводить процесс при температуре ниже 600° или при малой продолжительности реакции, что должно помешать развитию вторичных реакций. Условия образования ароматических углеводородов при синтезе их из более простых молекул или при распаде более сложных молекул обсуждаются в гл. 14 (стр. 253). [c.107]

    На положение равновесия в реакции этерификации существенно влияет строение кислоты и спирта. Подробно изучил этот вопрос в конце прошлого столетия русский ученый Н. А. Меншуткин. Он показал, что при нагревании эквивалентных количеств уксусной кислоты и какого-либо первичного спирта положение равновесия достигается после превращения в сложный эфир примерно 60— 70 % исходных веществ. Если в реакции участвует вторичный спирт, глубина превращения составит 10—15 %, а в случае третичного спирта лишь 2—3 %. Таким образом, лишь для первичных спиртов равновесие лежит в области, позволяющей получать удовлетворительные выходы сложных эфиров. В случае вторичных спиртов выход сложных эфиров можно повысить, сдвигая равновесие вправо путем удаления продуктов реакции или беря значительный избыток спирта. При использовании третичных спиртов и эти приемы не помогают, здесь приходится действовать на спирт сильными аци-лирующими средствами — ангидридами или хлорангидридами. Причиной пониженной способности вторичных и третичных спиртов считают пространственные препятствия разветвленный углеродный скелет спирта затрудняет подход к карбоксильной группе. Аналогичным образом затрудняют реакцию этерификации разветвления у а-углеродного атома в кислотном компоненте реакции. [c.194]

    В этой наименее изученной области вероятны одновременно протекающие процессы образования Мп+2 и МпООН. Кроме того, в этой области существенную роль играют ионы НН4+, механизм действия которых до настоящего времени еще С полной достоверностью не изучен. Предполагается, что ионы ЫН4+ и ионы 2п+2 играют роль во вторичных реакциях, которые в некоторых случаях не имеют электрохимической природы. Тем не менее в реальных источниках тока с солевым электролитом используется именно эта область pH. Это объясняется тем, что в слишком кислых электролитах не удается получить элементы с удовлетворительной сохранностью из-за коррозии цинка. [c.45]

    Взаимодействие первичных и вторичных аминов с акрилонитрилом было первой более или менее изученной областью реакции цианэтилирования [c.72]

    Обычно кокс нагревают в специальных печах, к которым предъявляют следующие требования возможность нагрева углеродистых материалов с определенной скоростью (особенно в области температур 500—900 °С) обеспечение минимальных потерь сырья в результате удаления летучих и протекания вторичных реакций возможность прокаливания мелких фракций кокса (менее 25 мм) утилизация тепла отходящих газов и раскаленного кокса высокая производительность. [c.231]

    Опубликован обширный обзор, посвященный гидрированию алкенов на твердых катализаторах [25]. В этом обзоре рассматриваются механизм реакции, ее термодинамики и кинетика. Нри атмосферном давлении и температурах выше примерно 500° С свободная энергия гидрирования ненасыщенных углеводородов оказывается положительной однако в условиях высокого парциального давления водорода насыщение алкенов может протекать и в области значительно более высоких температур. Температура и давление, обычно применяемые при процессах гидроочистки, благоприятствуют гидрированию алкенов, но при температурах выше 300° С в присутствии металлических катализаторов алкены могут вступать и во вторичные реакции крекинга. [c.128]


    Образующаяся при этом (а также и при первичном процессе окисления) окись углерода полностью или частично сгорает вблизи от углеродной поверхности, но уже по своему скоростному гомогенному закону, перехватывая диффундирующий из объема (из потока, омывающего поверхность) кислород и снова образуя уже вторичную углекислоту. Эта экзотер- мическая реакция должна в какой-то мере способствовать добавочному разогреву частицы (или поверхности) углерода, т. е, ускорению реакции за счет температурного фактора. Можно было бы ожидать, что эта побочная реакция по крайней мере компенсирует снижение температуры реагирующей углеродной поверхности, возникающее за счет первой побочной реакции восстановления. Однако в переходной, а тем более — в диффузионной области скорость процесса тормозится не за счет недостатка температуры, а за счет замедленного подвода кислорода к поверхности реакции имеющимися средствами молекулярной или молярной диффузии. [c.80]

    При проведении реакции внутри области холодного пламени на главный рост давления в определенные моменты времени накладываются резкие пики, обусловленные попыптением температуры в момент вспышки холодного пламени. Три таких пика (отвечающих трем последовательным холодным пламенам пропилена) видны на кривой роста давления, показанной на рис. 64. Как видно из рисуика, холоднопламенные процессы, накладываясь на реакцию медленного окисления, на короткий промежуток времени нарушают плавный ход этой реакции. Отсюда можно сделать вывод, что холодное пламя представляет собой некоторое вторичное явление, возникающее в процессе развития реакции медленного окисления. [c.235]

    Вторичное образование метана протекает через промежуточные свободные метильные радикалы Hg, но исключительно за счет расходования этана. В качестве первичного продукта полимеризации этилена образуется главным образом бутадиен. Более глубокая иолимеризапия приводит к образованию тяжелых углеводородов общей формулы СцН, где п изменяется от 1,3 до 1,5. Эти данные вытекают из не цитировавшейся докладчиком работы, которая была опубликована нами в 1936 г. в бюллетене Бельгийского химического общества (стр. 455—492), где приведены также уточненные значения констант равновесия и скорости этой реакции в области температур около 950°. [c.258]

    В главе VI — окисление—автор, излагая механизм реакции окисления парафиновых углеводородов с позиций перекисной теории, соверщенно не упоминает одного из основоположников перекисной теории— А. Н. Баха. Развитие исследований в области разработки перекисной теории автор приписывает немецким ученым Лангенбеку и Притцкову, опубликовавшим свои исследования в 1954 г., тогда как вопрос об образовании гидроперекисей как первичных продуктов присоединения кислорода к молекуле углеводорода значительно раньше был решен советскими исследователями. В выяснении сложного механизма реакции окисления углеводородов кислородом воздуха приоритет принадлежит советским ученым. Ряд гидроперекисей был выделен и описан К. И. Ивановым еще в 1949 г. Кроме того, -К- И. Иванов впервые показал, что вторичными реакциями при окислении углеводородов является не только их распад, но одновременно и дальнейшая пероксидация с образованием многоатомных гидроперекисей. [c.6]

    Недаппие исследгвапия в области крекинга этана показали, что первичная реакция, дающая этилен, водород и небольшое количество метана, может быть замедлена действием окиси азота вторичные реакции, ведущие в частности к получению высших з глеводородов, замедлить такпм способом нельзя [11]. [c.296]

    Как это следует из опыта и теории ( 17), простая мономолекулярная реакция, не осложненная вторичными процессами, в области высоких давлений протекает как реакция первого порядка (константа скорости ) и в области низких даБЛ(ший следует закону второго порядка, в обнд м случае выражаемых формулой  [c.113]

    Коэффициент г может быть обусловлен зависимостью от температуры как первичного акта, в результате которого образуются активные реакции, так и вторичных процессов. Температурную зависимость первичного акта нужно, в частности, ожидать, когда реакция проводится в спектральной области, расположенной вблизи границы, ра.чделяющей сплошной и дискретный спектры поглощения, или же вблизи границы предиссоциации. В этих случаях, благодаря увеличению числа молекул на болсс высоких колебательных уровнях, те длины волн, которые при низких температурах приходятся на дискретный участок спектра поглощения, при повышении температуры могут окязаться в области сплошного поглощения или в области предиссоциации, в результате чего эффективность этих длин волн повышается. [c.169]

    Радикальной реакцией с простыми цепями является, но-видимому, осуществляемое при радиационно-химическом инициировании разложение хлороформа в присутствии кислорода в температурном инторпале —80 —[-ЪТС [503]. Было обнаружено, что реакция идет в две стадии. Главным продуктом первой стадии является перекись I3OOH, причелг скорость ее образования не зависит от копцентрации кислорода. Во второй стадии перекись исчезает, и на смену ей появляются фосген, H I, G I4, СО и другие продукты. Существенно отметить, что аналогичная стадийность наблюдается и при термическом цепном окислении углеводородов в области медленного окисления (см. 44) с преимущественным образованием перекисей в первой стадии. Это можно рассматривать как указание на сходство химического механизма вторичных процессов в обеих реакциях. [c.226]

    Как видно из данных спектроскопии ЯМР, дейтерий бензольного кольца при алкилировании олефинами переходит в р-по-ложение боковой цепи получаемого алкилбензола. Об этом свидетельствует также наличие в ИК-спектрах алкилбензолов полосы поглощения в области 2170 см , что соответствует валентным колебаниям связи С—В в группе СНаВ. При повышении температуры алкилирования до 75 °С в ИК-спектрах этилбензола появляется полоса поглощения в области 2135 см , которая соответствует валентным колебаниям связи С—О в а-положении этильной группы. Подобное же явление наблюдается и в случае изопропилбензолов, что было подтверждено данными ПМР и ИК-спектрами синтезированных модельных алкилбензолов, содержащих дейтерий в а-положении алкильных группы. Экспериментами с этил- и изопропилбензолами, содержащими изотоп водорода в фиксированных положениях, установлено, что переход дейтерия в а-положение алкильной группы не является результатом вторичных превращений. К сожалению, эта реакция не изучена с бутеном-1 при высокой температуре, так как уже при 50 °С образуется смесь изо- и втор-бутил-бензолов, разделить которые не удалось. [c.89]

    ИК-спектры многих окисей биссульфидов и смесей продуктов окисления имеют широкую полосу в области 3200—3600 см , аналогичную полосе в спектрах поглощения растворов пиридина с водой [14]. Удалить воду из ассоциатов окисей вторичных, третичных биссульфидов и окисей биссульфидов из природных меркаптанов довольно трудно, так каК при температуре выше 50—60° происходит разложение продуктов. При перекристаллизации продуктов окисления, отгонке растворителей и хроматографировании на окиси алюминия наблюдается образование примесей с ненасыщенной связью. Появление подобных соединений можно объяснить, вероятнее всего, протеканием реакции Пуммерера [3]. Нам удалось выделить хроматографированием дисульфон ацетилтиоэфира (LIV) предполагаемого строения из продуктов окисления биссульфидов из нефтяных меркаптанов перекисью водорода в уксусной кислоте. [c.65]

    Получение этилсерной кислоты. Вследствие легкой доступности реагентов этерификация этилового спирта серной кислотой была одной из первых исследованных органических реакций. Ранняя, несколько противоречивая литература [1-67] очень обширна и может быть упомянута здесь лишь вкратце. Хеннель нашел [167], что при равных весовых количествах спирта и купоросного масла на образование этилсерной кислоты пошло 56% взятой кислоты. Бертло сообш ает [168], что при нагревании 94%-ного спирта с 95%-ной кислотой на паровой бане в течение 20 дней этерификация прошла на 59%. В свете последней работы, медленное превращение, проходившее в течение указанного длительного периода времени, заключалось скорее во вторичных реакциях, чем в образовании кислого эфира. Согласно указаниям третьего автора [34а], прп взаимодействии между 3 молями абсолютного спирта и 1 молем серной кислоты этерифицировалось 77% кислоты и равновесие очень мало изменялось с температурой. Более тщательное исследование этой реакции Креманном [169] показало, что при температурах, лежащих в области 22—96, среднее значение константы равновесия [c.32]

    Повышенная селективность цеолитов и цеолнтсодержащих катализаторов но сравнению с аморфным алюмосиликатом в крекинге углеводородного сырья связана с изменением направленности первичных и вторичных реакций. Для изооктана установлено, что первичными продуктами крекинга на цеолитах являются изобутан и бутилены, а на аморфном алюмосиликате — изобутан, бутилены, пропилен и метан [35]. Соответственно мольное отношение парафины олефины в продуктах крекинга изооктана при 450 °С в области преимуществен.чого протекания первичных реакций (конверсия сырья менее 20—25% масс.) составляет [c.51]

    С повышением конверсип изооктана отношение парафины олефины для цеолитов возрастает в большей степени (см. рис. 3.25) вследствие их способности ускорять скорость реакции переноса во вторичных реакциях превращения продуктов [27]. В этой области отношение парафины олефины в продуктах крекинга зависит также от обменного катиона в-цеолите. [c.52]

    Если высота слоя достаточно велика, то к некоторому уровню весь свободный кислород дутья израсходуется и в области, расположенной за этой границей (восстановительной зоне), выгорание углерода может идти только по восстановительным реакциям СО2 + + С = СО и НаО + С = СО + На- Эти реакции идут с эндотермическим тепловым эффектом и протекание их в восстановительной зоне сопровождается снижением температурного уровня. В связи с этим максимальный температурный уровень так же, как и максимальное содержание углекислоты в продуктах сгорания, соответствует концу кислородной зоны. Протекание восстановительных реакций приводит к нарастанию концентраций угарного газа и водорода, к которым добавляются летучие газообразные продукты. Дожигание этих продуктов неполного горения обычно происходит над поверхностью слоя с использованием вторичного дутья- При сжига- [c.226]

    А. И. Башкиров разработал хорошо управляемый процесс мягкого окисления высокомолекулярных парафинов, позволяющий получать в качестве основного продукта реакции предельные алифатические спирты, в которых преобладают соединения с таким же числом атомов углерода, как и у исходных парафинов [55, 56]. Процесс этот прошел опытно-промышленную проверку п в настоящее время внедряется в заводском масштабе. Особенность этого метода окисления парафииа состоит в том, что, регулируя процесс при помощи таких факторов, как температура,. скорость подачи газа-окислителя и концентрацию в нем кислорода, а также продолжительность окисления, удалось осуществить процесс жидкофазного окисления высокомолекулярных парафинов с высокой степенью избирательности. Процесс ведется нри температуре 165—170, продолжительность его 4 часа, подача газа-окислптеля (азото-кислород-ная смесь, содержащая 3% кислорода) 500 — 1000 л на 1 кг парафина в 1 час. В этих условиях достигается выход спиртов в 60% на взятый на окисление парафин. Основную часть продуктов окисления составляют вторичные спирты с тем же числом атомов углерода в молекуле, что и в исходном парафине. Процесс осупиютвляется по приводимой схеме 1. Если брать для окисления сравнительно широкие фракции парафинов ( is— Сзо), то удается получить широкую гамму высокомолекулярных алифатических спиртов предельного ряда. Области технического и бытового применения этих спиртов весьма обширны и многообразны. Спирты Си—Сго имеют особенно большое значение как исходные материалы для производства моющих и смачивающих средств, кото])ые до настоящего времени приготовлялись из пищевых жиров. Высокомолекулярные одноатомные [c.81]

    Имеющиеся экспериментальные данные показывают, что, действительно, для субстратов с первичными радикалами и метилом реакции протекают по механизму 5 2, с третичными — по 5л-1. Соединения, содержащие вторичные радикалы, и некоторые соединения бензильного типа относятся к пограничной области. В реакциях замещения первичных галогенопроизводных обнаружено влияние заместителей у -углеродного атома объемные заместители препятствуют образованию переходного состояния и тем самым тормозят реакцию. Так, например, реакции неопентилхлорида (СНз)зССН2С1 с нуклеофильными реагентами протекают значитель- [c.93]

    Цианэтилирование диалкиламинов представляет собой наиболее простой и хорошо исследованный случай в описываемой области. Во вторичных аминах имеется только один подвижный атом водорода, поэтому продукт реакции один, т. е. -диалкил-аминопропионитрил. С низшими членами ряда диалкиламинов реакция идет очень энергично и требует на первой стадии охлаждения, реакция с более высокомолекулярными аминами (например диоктиламином требует нагревания до 100°. [c.75]

    Даже при низких температурах гидротриоксиды быстро окисляют вторичные амины до нитроксильных радикалов, третичные амины и фосфины — до соответствующих N- и Р-оксидов [74—77]. Окисление фосфитов — сильноэкзотермичная реакция она сопровождается хемилюминесцен-цией в видимой области спектра, эмиттером которой является основной продукт реакции — фосфат в триплетно-возбужденном состоянии ]78]. [c.23]

    Этот метод синтеза широко применяется для получения моно-и диалкилуксусных кислот с высоким молекулярным весом, алкильные группы в которых не разветвлены. Иногда в качестве алкилирующих агентов используют вторичные галогенпроизводные, а третичные галогенпроизводные для этого не применяют никогда. Для того чтобы расширить область алкилирования, используют гидрид натрия в таком растворителе, как диметилформамид примером такой реакции может служить этилирование диэтилового эфира /ире/и-бутилмалоновой кислоты [70], однако наилучшей средой для осуществляемого с трудом алкилирования малоновых эфиров является, по-видимому, гидрид натрия в тетраметилмочевине [71]. Находящиеся в а-положении малонового эфнра атомы водорода имеют сильно выраженный кислый характер за счет того, что они присоединены к атому углерода, расположенному между двумя карб-этоксигруппами. Этот эффект обычно приписывают резонансной стабилизации карбаниона. Первая стадия реакции приводит к об-+ — [c.233]

    При взаимодействии первичных и вторичных галогенидов с нитритом натрия, иапример в диметилформамиде > (растворитель), реакция имеет SN2-xapaKTep >, причем в случае вторичных галогенидов также образуются преимущественно интроалканы. Реакцию с третичными галогенидами в этих условиях также не удается сдвинуть в 5к2-область (образуются главным образом олефины). [c.283]

    При гидроочистке дистиллятов вторичного происхождения, содержащих непредельные углеводороды, отмечено взаимное влияние их и тиофена на скорость гидрогенолиза и гидрирования. На рис. 88 показан характер этой зависимости, полученной И. В. Ка-лечицем для гептена и тиофена на промышленном алюмо-кобальт-молибденовом катализаторе. По оси абсцисс отложена обратная величина температуры, изменяемой от 250 до 475 °С. При повышенных температурах (левая часть графика) прямые идут почти параллельно, т. е. скорости обеих реакций изменяются в этой области практически одинаково, поэтому повышением температуры нельзя увеличить избирательность какой-то одной реакции. Определение скорости гидрирования гептена без тиофена показало, что Б области более высоких температур, соответствующих режимам промышленной гидроочистки, скорость выше, чем в присутствии тиофена, т. е. последний тормозит гидрирование. [c.236]

    Необходимо отметить, что в зависимости от преимущественного влияния механических напряжений в электроде на кинетику анодной или катодной реакции (в том числе вследствие вторичных влияний — изменения адсорбции активных веществ, нарушения состояния поверхностных пленок и др.) можно наблюдать либо разблагораживание, либо облагораживание стационарного потенциала. Поэтому выявление взаимосвязи напряженного состояния металла и его электрохимических свойств должно проводиться только в условиях внешней поляриазции до значений потенциала, обеспечивающих преимущественное протекание реакции анодного растворения (т. е. в области тафелевского участка анодной поля- [c.168]

    В области жидкофазного окисления проведены весьма обширные исследовательские работы, но только сравнительно небольшой объем этих исследований был посвящен изучению реакций насыщенных углеводородов. Опубликованы результаты весьма детальных исследований окисления насыщенных углеводородов [197—199]. Эти данные подтверждают гидроперекисную теорию окисления, согласно которой первичными продуктами окисления являются гидроперекиси, как представлено уравнениями (95)—(97) гидроперекиси, вступая в дальнейшие взаимодействия, превращаются в конечные продукты. Цитируемые работы показали также, что максимальная скорость окисления возрастает с увеличением длины углеродной цепи в интервале G10H22— jaHie. Это можно объяснить, если принять, что начальное окисление происходит в результате воздействия на вторичный водород метиленовой группы и что вероятность участия в реакции всех метиленовых групп одинакова. Строение углеводорода также весьма существенно влияет на легкость окисления. Углеводороды с разветвленной углеродной цепью, содержащие третичные водороды в молекуле, окисляются легче, чем углеводороды, содержащие только первичные и вторичные водородные атомы. [c.211]

    Эта реакция сопровождается рядом вторичных процессов с участием N0 и О, протекание которых приводит к образованию N2 и О. Она является, следовательно, одним из первичных процессов необратимого разложения реагирующей системы Ы204 2Ы025= 2Ы0- -02. Параметры АЭС с N204 в качестве теплоносителя и рабочего тела, как следует из данных работ [296—298], расположены в области температур 1000 К и давлений Р 200 атм. При температуре Т 1000 °К вклад процессов с участием атомарного кислорода в скорость образования азота пренебрежимо мал по сравнению с вкладом процессов термической диссоциации ЫгО. В связи с этим для скорости изменения суммарной концентрации компоненты N20 и N2 [c.114]


Смотреть страницы где упоминается термин Реакции вторичные области: [c.184]    [c.316]    [c.308]    [c.337]    [c.262]    [c.208]    [c.38]    [c.25]    [c.326]    [c.85]    [c.126]    [c.16]    [c.192]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции вторичные

Сущность процесса анодирования. Виды процессов анодирования. Область применения анодирования. Адгезия органических покрытий. Анодная оксидная пленка. Диэлектрический или барьерный слой. Влияние режима анодирования на барьерный слой Пористость анодных покрытий. Формирующее напряжение и пробивное напряжение. Механизм роста пленки. Размеры ячеек. Вторичные реакции ЗАЩИТНО-ДЕКОРАТИВНОЕ АНОДИРОВАНИЕ



© 2024 chem21.info Реклама на сайте