Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк определение электролитическое

    Экстракционно-фотометрический метод был применен нами для определения мышьяка в электролитической меди, бронзе, сурьме и продажной соляной кислоте. Методика работы приводится ниже. [c.279]

    Свинцовые концентраты, основнЫ М компонентом которых является сульфид свинца РЬ5, содержат примеси меди, цинка, сурь мы, мышьяка, висмута, серебра, золота и других металлов. При восстановительной шахтной плавке эти металлы переходят в свинец и загрязняют его. Черновой свинец (веркблей) подвергают огневому рафинированию, удаляя примеси в определенной последовательности. Сначала удаляют медь ликвацией серой, затем сурьму и мышьяк, а также олово путем обработки свинца расплавом едкого натра и селитры (способ Гарриса). Серебро удаляют с помощью цинка, висмут — с помощью магния и кальция В ряде случаев, когда черновой свинец содержит заметные количества висмута и сурьмы, а также серебра, может оказаться целесообразным его электролитическое рафинирование, тем более, что конечным продуктом является свинец высокой чистоты. [c.261]


    Определение в форме металла после выделения последнего электролизом. Наиболее распространенный способ электролитического определения — выделение кобальта из аммиачных растворов, содержащих различные добавки. Необходимо, чтобы анализируемый раствор не содержал катионов металлов, выделяющихся совместно с кобальтом. Кроме того, должны отсутствовать большие количества металлов, образующих малорастворимые гидроокиси, так как они склонны адсорбировать из раствора ионы кобальта или загрязнять осадок металла на катоде. В анализируемом растворе не должно быть солей никеля (если не предполагается определять никель совместно с кобальтом), серебра, меди, мышьяка, железа, хрома, алюминия, вольфрама, молибдена. Азотистая кислота и ее соли также должны отсутствовать, так как они замедляют или прекращают выделение кобальта [140]. [c.90]

    Цель работы. Определение мышьяка посредством титрования окислителем с применением в качестве реагента электролитически генерируемого брома и с использованием амперометрического метода титрования до мертвой точки . [c.341]

    Результаты определения мышьяка в реактивной соляной кислоте помещены в табл. 1, в электролитической меди, технической сурьме и бронзах — в табл. 2. [c.280]

    Лабораторные опыты, ставившие своей целью изучить коррозионное поведение меди в насыщенных парами воды атмосферах (/У-100%), содержащих сернистый газ, показали, что легирование меди мышьяком повышает ее стойкость мышьяковистая медь имеет в этих условиях определенные преимущества перед электролитической медью высокой чистоты. [c.252]

    При электролитическом методе определения меди требуется получение прозрачного раствора, свободного от мышьяка, сурьмы, олова, молибдена, золота, платиновых металлов, серебра, ртути, висмута, селена (IV) и теллура (IV), загрязняющих осадок выделяющейся меди. Кроме того, должны отсутствовать роданистоводородная кислота, присутствие кото-рЬй делает осадок меди губчатым, и соляная кислота, действующая аналогично и, кроме того, вызывающая растворение платины на аноде и переход ее на катод. Затем должны отсутствовать окислители, как, нанример, окислы азота, большие количества нитрата железа (III) или азотной кислоты, которые вначале препятствуют осаждению меди, а потом служат причиной получения высоких результатов, если в конце концов удалось добиться полноты осаждения меди Электролиз может быть проведен в азотнокислом или сернокислом растворе, и обычно его проводят в смеси обеих кислот. Если применяется одна азотная кислота, имеется опасность замедленного или неполного осаждения. Этого можно избежать, прибавляя 1 каплю 0,1 н. раствора соляной кислоты перед началом электролиза Катод и анод желательно иметь в виде открытых сетчатых платиновых цилиндров с матированной новерхностью, полученной при помощи пескоструйного аппарата (стр. 55). [c.286]


    Из других методов, нашедших применение для отделения мышьяка, следует упомянуть метод внутреннего электролиза с использованием амальгамы [56, 57] и электролитического восстановления [58, 59]. Этот метод [59] был использован при определении примеси Аз в особо чистых 51 и 5102. [c.187]

    Можно рекомендовать два варианта подготовки пробы к анализу при определении мышьяка в меди и ее сплавах. Лучшие результаты дает метод с предварительным электролитическим выделением меди [1O0], последующей экстракцией иодида мышьяка(III) хлороформом и определением его в виде мышьяковомолибденовой сини. По другому варианту, пробу растворяют в смеси хлористоводородной кислоты и пергидроля, избыток последнего удаляют кипячением и восстановлением гипофосфитом [101, 102], а затем экстрагируют хлорид мышьяка(III) и продолжают определение, как и в первом варианте. Этот метод дает удовлетворительные результаты. [c.150]

    Ход анализа. Навеску сплава 1 г при содержании мышьяка 0,1% или 0,1 г при его содержании больше 0,1% растворяют в 10 мл азотной кислоты (пл. 1,33). Если сплав содержит олово, то навеску пробы растворяют в смеси 10 мл азотной кислоты (пл. 1,33), 10 мя 4%-ной борной кислоты, 1,5 мл фтористоводородной кислоты, разбавленной (1 1) и 5 мл раствора сульфата железа (111). В том и другом случае раствор после полного растворения пробы разбавляют водой до - 200 мл и выделяют медь электролитически, с вращающимся анодом при силе тока 5 А. Затем электроды обмывают вод-ой. Если в пробе присутствует свинец, то он выделяется на аноде. Этот осадок растворяют в растворе, из которого проводили выделение меди, и разбавляют раствор до 250 или 500 мл. К аликвотной части раствора, содержащей до 100 мкг мышьяка, прибавляют 2 мл серной кислоты, разбавленной (1 1), и выпаривают до появления ее паров. Остаток растворяют при нагревании в 10 мл хлористоводородной кислоты, разбавленной (1 1), охлаждают, вводят 2 мл 35%-ного раствора хлорида титана (III) и 2 мл раствора иодида калия, раствор перемешивают и выдерживают в течение 5—10 мин. Затем его переводят в делительную воронку, обмывая стакан 35 мл концентрированной хлористоводородной кислоты, и дважды экстрагируют иодид мышьяка хлороформом. Первый раз берут 25 мл, а второй раз — 10 мл хлороформа. Объединенные экстракты помещают в делительную воронку и реэкстрагируют мышьяк 15 мл воды. Далее ведут определение, как указано в разделах IV. 3.1 или IV. 3.2. [c.150]

    Самым распространенным методом определения меди в алюминиевых сплавах до последнего времени являлся электролитический метод, позволяющий определять-медь от 0,1% и более во всех сплавах, за исключением тех, которые содержат большие количества железа, мышьяка и висмута. Электролитическим методом определять медь можно и без применения внешнего источника постоянного тока — методом внутреннего электролиза [153, 154], что используется значительно реже. Кроме электролитического метода, широко известен объемный йодометрический метод, применяемый вместо электровесового для быстрых серийных анализов или при отсутствии платиновых электродов. [c.64]

    Наиболее распространенным методом объемного определения меди с использованием неорганических реактивов является йодометрический метод. По точности этот метод очень близок к электролитическому и обладает достаточной специфичностью /5/. Йодометрическому определению меди серьезные помехи оказывают только окислы азота, соединения мышьяка (Ш) и сурьмы (Ш). Прочие катионы и анионы обычно не мешают совсем, в противном случав мешающее действие устраняется введением комплексообразователей (фторид натрия, комплексон Ш и др.) [c.20]

    Висмут, серебро, мышьяк и сурьма мешают электролитическому и не мешают иодометрическому определению меди. [c.130]

    L U к е С. L., С а m р Ь е 1 1 М. Е,, Anal. hem., 25, 1589 (1953).—Этот метод представляет собой видоизменение способа, ранее разработанного Пейном [Р а у п е S. Т., Analyst, 77, 278 (1952)]. Однако Пейн для определения выделенного мышьяка применял электролитический метод Гутцайта. [c.267]

    Г. Норвиц и И. Норвиц применяли хлорную кислоту для удаления веществ, мешающих электролитическому определению свинца в виде двуокиси. Хлориды, бромиды, мышьяк, сурьму, олово и органические соединения удаляли, выпаривая до появления паров с одной хлорной кислотой или в смеси с бромистово-дородиой или азотной кислотами. [c.123]

    Иодомет ический метод определения меди основан на том, что прк обработке подкисленных растворов солей меди (II) иодидом калия образуется иодид меди (I) и выделяется иод. По точности этот метод очень близок к электролитическому методу и, обладает тем преимуществом, что при работе мало отражается присутствие Посторонних веществ это преимущество имеет особенно бЬльшое значение при анализе материалоа сложного состава, например медных руд. Иодометрическому определению, меди мешают окислы азота, соединения мышьяка (III) и сурьмы (III), реагирующие с иодом соединения железа fill), молибдена (VI) и селена (VI), выделяющие иод из иодида калия минеральные кислоты в присутствии мышьяка (V) и сурьмы (V), а если последних нет, то помехи возникают, когда концентрация кислот превышает 3% (по объему), и, наконец, избыточные "количества ацетата аммония, если из кислот [c.287]


    Гравиметрически кадмий обычно определяют в виде сульфида, осаждая его сероводородом и удаляя мышьяк, сурьму и олово при помощи аммиака. Цинковые руды растворяют в царской водке, а нерастворимый остаток удаляют фильтрованием. Фильтрат разбавляют по крайней мере в 10 раз по отношению к его первоначальному объему. Сульфид цинка удаляют соляной кислотой. В некоторых случаях кадмий удобнее определять электролитически с использованием в качестве электролита раствор цианида калия. К. Е. Мур и Т. А. Робинсон [49] показали, что реакция кадмия с 1-фенил-тетразолон-5-тионом дает легко фильтруемый осадок, который можно высушить при 100° С без разложения. Несмотря на то что реагент не совсем избирателен, высокая чувствительность реакции кадмия позволяет использовать метод для гравиметрического определения (1 мг осадка эквивалентен 0,2408 мг кадмия). [c.120]

    Сернистые свинец и медь, оставшиеся после извлечения сернистого мышьяка и сурьмы, растворяют в азотной кислоте, прибавляют несколько капель серной кислоты, сильно выпаривают, после прибавления спирта дают осесть сернокислому свинцу в таком виде его и взвешивают. С раствором сернокислой меди можно поступить двояко или снова осадить его сероводородом и, озолив еще влажный фильтр при очень низкой температуре, последующим прокаливанием перевести осадок в окись меди и взвесить (см. т. II, ч. 2, вып. 1, стр. 351) или — что лучше и проще—выделить медь электролитически (ср. т. II, ч. 2, вып. 1, стр. 53 и 3.46). Определение мышьяка (см. также стр. 405) производят из отдельной навески. [c.45]

    Очень хорошие результаты дает электролитическое обогащение при определении небольших количеств сурьмы, мышьяка и теллура в жидкостях. Техника, здесь применяемая, разработана была Рутардом она применима только в тех случаях, когда раствор не содержит меди. [c.33]

    Для электролитического определения мышьяка, который в этом случае должен содержаться в виде трехвалентного (пятивалентный мышьяк должен быть восстановлен при помощи SOg, для чего 5 мл разбавляют 20 мл воды, добавляют 0,5 2 KHSOg и кипятят до удаления SOg) применяют аппарат Thorpe, изображенный на рис, 22. В холодильном сосуде W находится стеклянный цилиндр Е. Между этим цилиндром и стеклянным колоколом А находится глиняный сосуд D. В качестве катода К служит свинцовая жесть, в качестве анода — платиновая жесть, закрепленная на нижнем крае глиняного сосуда. Трубка С наполнена кристаллическим a lo. [c.188]

    Приемник, где пятна окрашивались в следующие цвета (порядок перечисления соответствует возрастанию Си + темно-коричневый, РЬ + коричневый, желтый, ВР+ коричнево-черный и Нд2+ коричнево-черный. Разделение ионов тяжелых металлов (таллия, меди, свинца, мышьяка, кадмия, сурьмы, висмута и ртути), производимое при судебных экспертизах, исследовалось Кюнци и сотр. [12, 13]. На том же адсорбенте, что и в работе [2], с применением различных комплексообразующих реагентов и органических растворителей, обнаружено, что наилучшим растворителем является смесь 100 мл бензольно-ацетонового раствора (3 1), насыщенного винной кислотой и 6 мл 10 %-ной азотной кислоты. Однако в этом растворителе пятно ртути может налагаться на пятно висмута и пятно свинца налагается на пятно меди, а кадмий дает три пятна. С помощью смеси метанол—ацетонитрил—азотная кислота (пропорции не указаны) можно селективно отделить таллий (i 0,72) от остальных ионов, которые перемещались с фронтом или вблизи фронта растворителя. Отмечается [2, 12, 13], что не следует обращать внимание на абсолютные значения Rj, так как они зависят от состава разделяемой смеси. Для оценки результатов важны только относительная последовательность пятен ионов и их цвет после опрыскивания различными обнаруживающими реагентами. С растворителем Кюнци пятна разделяемых ионов располагаются в следующей последовательности Hg>Bi> Sb> d>As>Pb> u>Tl. Некоторые цветные реакции для различных ионов этой группы указаны в табл. 33.1. Сотрудники Кюнци применили разработанный метод для решения практических задач по количественному определению содержания некоторых металлов, например мышьяка в муке, таллия в крови, ртути в моче и мышьяка и кадмия в чае. Для количественной оценки размеры полученных пятен сопоставляли с размерами пятен при работе со стандартными растворами. Стандартное отклонение при определении содержания мышьяка и кадмия в чае составляло 10%, а при определении ртути в моче —0,5 мг-7о причем для проведения анализа требовалось всего 3 ч, в то время как анализ электролитическим методом занимал 12 ч, а стандартное отклонение для последнего метода составляло 0,4—0,5мг-%. [c.481]

    В работе [262] микроколичества мышьяка отделяли от кремния и особой чистоты двуокиси кремния осаждением на платиновом катоде в виде АзНз- Электролитическое концентрирование микропримесей на угольном порошке с последзгющим спектральным определением использовано для анализа сурьмы высокой чистоты [263].— Прим. ред. [c.106]

    Иодометрический метод опрэделения меди основан на том, что при обработке подкисленных растворов солей меди (II) иодидом калия образуется иодид меди (I) и выделяется иод. По точности этот метод очень близок к электролитическому методу и обладает тем преимуществом, что при работе мало отражается присутствие посторонних веществ это преимущество имеет особенно бояьшое значение при анализе материалов слол<ного состава, например медных руд. Иодометрическому определению меди мешают окислы азота, соединения мышьяка (III) и сурьмы (III), реагирующие с иодом соединения железа (III), молибдена (VI) и селена (VI), выделяющие иод из иодида калия минеральные кислоты в присутствии мышьяка (V) и сурьмгл (V), а если последних нет, то помехи возникают, когда концентрация кислот превышает 3% (по объему), и, наконец, избыточные количества ацетата аммония, если из кислот присутствует только уксусная кислота. Определению не мешают цинк, мышьяк (V) и сурьма (V), висмут, свинец и серебро. Три последних элемента вступают, однако, в реакцию с иодидом калия, выделяя осадок, и требуют поэтому прибавления добавочного количества этого реактива. [c.262]

    Для определения 0,019 мг или более германия в присутствии больших количеств мышьяка S. А. Со ase [Analyst, 59, 462 (1934)] рекомендует электролитическое восстановление в щелочном растворе до германистого водорода ОеН4 с последующим термическим разложением и сравнением образующегося при этом зеркала со стандартами, приготовленными аналогичным образом. [c.315]

    В литературе описано микроаналитическое определение углерода и водорода в присутствии сурьмы, мышьяка, висмута и олова . При сожжении металлорганических соединений ртути можно одновременно определять углерод, водород и ртуть. Ртуть улетучивается в виде металла, количественно конденсируется, после чего ее взвешивают как таковую или в виде амальгамы после конденсации на золотой фольге. Ртуть можно также перегонять в азотную кислоту, в которой она полностью растворяется, после чего ее определяют электролитически В результате критического рассмотрения более старых работ и улучшения соответствующих микромодификаций Боэтиус разработал универсальный надежный метод количественного определения ртути. Он пригоден также для ртутьорганических соединений, содержащих хлор, бром, серу, иод и азот. При элементарном анализе соединений щелочных и щелочноземельных металлов необходимо принимать во внимание, что они удерживают двуокись углерода, которую надо вытеснять кислыми добавками или определять металл косвенно, по содержанию двуокиси углерода. [c.78]


Смотреть страницы где упоминается термин Мышьяк определение электролитическое: [c.345]    [c.576]    [c.385]    [c.139]    [c.107]    [c.107]    [c.190]    [c.148]    [c.189]    [c.260]    [c.516]    [c.427]    [c.130]   
Химико-технические методы исследования Том 2 (0) -- [ c.188 ]




ПОИСК







© 2025 chem21.info Реклама на сайте