Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теорема Яна Теллера

    Вопрос о том, какая гибридизация возникает при введении атома в ту или иную молекулу или кристалл, решается таким же путем, какой мы продемонстрировали, рассматривая зр2-гибридизацию. Если предполагается, что данное вещество может иметь несколько структур, то вопрос о том, какова она, решается лишь при расчете энергии состояния системы. При этом следует учитывать, что в вырожденном электронном состоянии конфигурация нелинейной молекулярной системы изменяется так, что вырождение оказывается снятым (теорема Яна—Теллера). Теорема Яна—Теллера помогает понять связь некоторых свойств молекул и кристаллов с их симметрией. Так, например, ионы переходных металлов, орбитальное состояние которых является вырожденным вследствие их симметрии, в октаэдрических полях образуют комплексы не с октаэдрической, а с более низкой симметрией, например тетрагональной. Вследствие снятия вырождения у иона в кристалле его энергия уменьшается, что обеспечивает комплексу большую устойчивость. [c.92]


    Эдвард Теллер (род. 1908 г.) — немецкий физик, после прихода к власти нацистов эмигрировал в США, где его называют отцом водородной бомбы . Автор ряда фундаментальных исследований в области квантовой механики, квантовой химии, > в частности в области теории химических и особенно термоядерных реакций. Идея теоремы Яна— Теллера, по словам самого автора, принадлежит Л. Д. Ландау, высказавшему ее еще в 1934 г. [c.179]

    Степени вырождения (вес) р электронных уровней энергии, в частности степень вырождения ро основного уровня, легко находятся на основании символа уровня (см. 11, 23). Так, для электронного уровня энергии атома, обозначенного символом LJ, где М = 25 -Ь 1 — мультиплетность J — квантовое число общего момента импульса, вес р равен 2У + 1. Для двухатомной молекулы или линейной многоатомной молекулы вес р рассчитывается по мультиплетности М = = 25 4- 1, причем для 2 состояний р равен М, а для /7, А и других состояний он равен 2М. Вес р электронных уровней многоатомных нелинейных молекул согласно теореме Яна —Теллера определяется только мультиплетностью. Ниже приведены значения р для молекул двухатомные и линейные многоатомные молекулы [c.316]

    З -Элементы. В табл. 6.9 приведены предсказанные на основе теоремы Яна — Теллера и подтвержденные оптическими спектрами точечные группы симметрии и характерные полиэдры для комплексов Зй-катионов с одинаковыми лигандами (если лиганды в комплексе разнородны, симметрия понижается). [c.245]

    Молекулы или ионы координационных соединений обладают обычно довольно высокой симметрией, а именно свойства симметрии лежат в основе теоремы Яна — Теллера, сформулированной ими в 1937 г. вырожденное электронное состояние всякой нелинейной молекулярной системы является неустойчивым, вследствие чего такая система подвергается некоторому искажению, понижающему ее симметрию и снимающему вырождение. [c.193]

    Такую формулировку теоремы Яна — Теллера не следует понимать в том смысле, что есть некоторая симметричная ядерная конфигурация с электронным вырождением в минимуме адиабатического потенциала (см. раздел 4.1), получаемого решением уравне- [c.193]

    Согласно предсказаниям теории Хюккеля, циклобутадиен также должен иметь триплетное основное состояние. В этом случае следовало бы ожидать, что молекула будет обладать плоской конфигурацией, однако в этом случае снова не было бы выигрыша в энергии за счет делокализации электронов по сравнению с прямоугольной конфигурацией молекулы с двумя изолированными этиленовыми связями. Кроме того, из теоремы Яна — Теллера (разд. 12.4) известно, что молекулы с вырожденными состояниями претерпевают искажения, чтобы снять вырождение, так что основное состояние циклобутадиена почти несомненно имеет прямоугольную конфигурацию и синглетное спиновое состояние. [c.336]


    Таким образом, теорема Яна — Теллера утверждает, что при таких орбитально вырожденных электронных состояниях всегда должно и будет происходить какое-то неполностью симметричное смещение ядер, в отношении которого полностью симметричная конфигурация неустойчива, а поэтому молекула будет принимать новую форму. Если начертить кривую потенциальной энергии вырожденного электронного состояния для некоторого конкретного колебания, минимум кривой не будет соответствовать несмещенному положению (отвечающему полносимметричной конфи-1 урации), как это имеет место. для орбитально невырожденных уровней, а вместо этого кривая разделится на невырожденные компоненты возможный тип такого расщепления приведен на рис. 40 (I обозначает тип колебания, в отношении которого полностью симметричная конфигурация ядер нестабильна). [c.237]

    Теорема Яна—Теллера применима не только к основным, но и к возбужденным электронным состояниям. Однако в последнем случае картина усложняется из-за малой продолжительности жизни возбужденного состояния и невозможности достижения устойчивой равновесной конфигурации ядер в комплексе. Тем не менее этот эффект все же отчетливо обнаруживается при спектральном изучении таких ионов, как Т1(Н20)б , Ре(Н20)е и СоРб . Последние два иона имеют в основном состоянии электронную конфигурацию и в возбужденном состоянии .йу. Как будет видно из дальнейшего, при наличии другого механизма снятия вырождения основного состояния эффект Яна— Теллера может не наблюдаться. [c.443]

    Опыт показывает, что спектр поглощения иона Си" в водном растворе содержит не одну симметричную полосу, а несколько близко расположенных и взаимно перекрывающихся полос. Внимательный читатель мог заметить, что уже в спектре иона [Т1 (Н20)еР+ нет простой симметричной полосы поглощения. В каждо.м таком случае причина усложнения спектра в конечно.м счете сводится к искажению правильного октаэдра, которое следует из теоремы Яна-Теллера. Эту теорему рассмотрим несколько ниже (стр. 73). [c.64]

    Эффект Яна — Теллера. В 1937 г. Ян и Теллер доказали очень важную теорему, которая гласит Вырожденное электронное состояние всякой нелинейной молекулярной системы является неустойчивым, вследствие чего такая система подвергается некоторому искажению, понижающему ее симметрию и снимающему вырождение . Несмотря на довольно абстрактную формулировку, эта простая теорема имеет большое практическое значение, так как она позволяет понять структурные особенности целого ряда комплексов переходных металлов. В качестве иллюстрации теоремы Яна — Теллера рассмотрим ион Си +. Предположим, что ион находится в центре правильного октаэдра, составленного из лигандов. В соответствии с изложенными ранее представлениями (см. стр. 64) можно считать, что у этого иона есть одна дырка на орбитали [c.73]

    Природу такого искажения нетрудно объяснить физически. Предположим, что одна из двух е -орбиталей, например орбиталь х —у ), занята парой электронов, а на орбитали находится один электрон. Это значит, что четыре отрицательных заряда или четыре отрицательных конца диполей в плоскости ху изолированы от действия электростатического притяжения иона Си + в большей мере, чем два других заряда на оси г. Естественно, что эти два лиганда подойдут несколько ближе к центральному иону, чем остальные четыре. Наоборот, если на 2 -орбитали находится пара электронов, а на (х —г/ )-орбитали — один, то четыре лиганда в плоскости ху подойдут к центральному иону несколько ближе, чем два лиганда на оси г. Возможно также, что неспаренный электрон будет находиться на орбитали, представляющей собой линейную комбинацию орбиталей (х —у ) и г . В этом случае искажение октаэдра можно представить как некоторую комбинацию двух рассмотренных выше случаев. Указанные простые примеры позволяют понять, какие важные выводы можно сделать на основании теоремы Яна —Теллера. Но при этом необходимо учитывать следующее  [c.73]

    Следует также отметить, что теорема Яна — Теллера применима не только к основным, но и к возбужденным состояниям, хотя в таких случаях картина усложняется. Поскольку возбужденное электронное состояние представляет собой динамическую систему [c.75]

    По теореме Яна-Теллера первого порядка и Пайерлса в подобных случаях всегда существует колебательное движение,смещающее адра таким образом, что симметрия молекулы снизится и вырождение будет снято. Произойдет расщепление этой частично заполненной зоШ) относительно уровня Ферми, и сплошная проводящая металлическая система одномерного типа превратится в диэлектрик. Все это указывает на малую вероятность бесконечной поликумуленовой конфигурации для карбина. Вероятность же существования полииновой конфигурации соответствует плохой проводимости, и ее плотность 1,97 почти вдвое меньше плотности алмаза. [c.90]

    Для пятиатомных радикалов АВ4 можно было бы предполагать тетраэдрическую конфигурацию, но согласно теореме Яна — Теллера для трижды вырожденных дублетных электронных состояний р1 и р2 (при одном неспаренном электроне 5=72, а мультиплетность равна 2) правильные тетраэдрические конфигурации внутренне нестабильны. Изменение симметрии радикала от Та до Сги может быть обусловлено как возмущением Яна —Теллера, так, например, и несимметричным внешним окружением, когда соседние катионы располагаются относительно атомов В радикала таким образом, что эффективная симметрия понижается. Если радикал имеет конфигурацию искаженного тетраэдра, то интерес представляют степень искажения и выяснение вклада разрыхляющих, связывающих и несвязывающих молекулярных орбиталей (например, симметрии а и /2) в конечное состояние. Эта задача в принципе решается с привлечением спектроскопии ЭПР. [c.70]


    Есть и другое важное обстоятельство, которым до сих пор пренебрегали, вытекающее также из величин ЭСКП. Видно, что пики двух горбов наблюдаются для электронных конфигураций и d , а не для d и d , как наблюдали экспериментально. Объяснение этому несомненно вытекает из того факта, что для d - и -конфигураций, например для комплексов и Си , невозможна правильная октаэдрическая структура для комплексов этих ионов обычно имеет место тетрагонально искаженная октаэдрическая форма. Электронные конфигурации основных состояний спин-свободных комплексов dldy и указывают, что разрыхляющая -у-орбиталь вырождена и электрон может находиться либо на dx2 y2-, либо на йг2 -орбитали. Однако, согласно теореме Яна-Теллера, если основному состоянию системы соответствует несколько эквивалентных вырожденных энергетических уровней, искажение системы должно снять вырождение и понизить один из энергетических уровней системы. Если, как в рассматриваемом случае, есть два вырожденных уровня, энергия одного из них повышается, а энергия другого на столько же понижается. Мы знаем сейчао, по крайней мере для комплексов Си , что искажение сводится к приближению четырех лигандов в плоскости ху к иону меди и удалению двух лигандов, расположенных на оси z в транс-положении. Таким образом, dz2- и 2-( з-орбитали более не вырождены энергетически первая лежит ниже и она предпочтительно будет заполняться. Найденная для d - и -систем дополнительная устойчивость называется энергией стабилизации на — Теллера. Она равна величине А, увеличение которой обусловлено приближением четырех лигандов к центральному иону. Для гидратированного иона Си эта дополнительная энергия была оценена примерно в 8 ккал1моль. [c.292]

    Структурная изомерия часто связана с искажением правильной координационной сферы за счет эффекта Яна — Теллера. Согласно теореме Яна—Теллера высокосимметричной конфигурации комплекса, приводящей к вырожденному электронному терму, не может соответствовать минимум энергии. [c.155]

    Об этом говорит теорема Яна — Теллера Если нелинейная система имеет вырожденные энергетические уровни в основном состоянии, то такое состояние будет неустойчивым, и в системе возникнут искажения, стремящиеся снять вырождение и сделать один из уровней более устойчивым [к-25]. Примером могут служить комплексы иона с шестью одинаковыми лигандами. Электронная структура иона в октаэдрическом поле шести лигандов состоит из двух уровней (/2,,) и (е,.) Заселение высшего уровня (е У осуществляется двумя способами х и ( г=)Ч х > ) > т. е. основное электронное состояние дважды вырождено. Согласно теореме Яна — Теллера при этом октаэдр СиХб не будет стабильным и исказится, перейдя в конфигурацию тетрагональной бипирамиды с четырьмя короткими связями Си—в плоскости хоу и двумя длинными связями Си— Х, направленными вдоль оси 2. В поле тетрагональной симметрии вырождение снимается, энергии d-J- nd y2-орбиталей уже не равны (см. рис. 102). На высшей Орбитали находится теперь один электрон, а на более низкой — два электрона вместо трех электронов на высшем уровне (е ) в октаэдре. Поэтому электронная энергия системы понижается, и ядерная конфигурация тетрагональной [c.244]

    Радикал циклопропенила интересен с точки зрения теории. Третий электрон с равным основанием может быть помещен на любую из двух вырожденных антисвязывающих МО, и, согласяо теореме Яна— Теллера (см. гл. 5), симметрия ядерной конфигурации молекулы должна быть нарушена. [c.258]

    Радикал циклопропенила представляет дополнительный теоретический интерес. Третий электрон с равным основанием может быть помещен на любую из двух вырожденных антисвязывающих МО и согласно теореме Яна — Теллера (гл. 6) симметрия ядерной конфигурации молекулы должна быть нарушена. Однако легко показать (см. ниже задачу 8.2), что искажение центросимметричной конфигурации атомов циклопропенильного кольца приведет к дополнительному увеличению электронной энергии. [c.214]

    Теорема Яна—Теллера. Чтобы получить величину электронноколебательного расщепления, следует рассмотреть расщепление потенциальной функции для неполносимметричных смещений ядер. При некоторых смещениях такого типа происходит то же самое, что и в линейных молекулах (стр. 94 и сл.), и, как показали [c.137]

    Учет Э.-к. в. наиболее важен для вырожденных энергетич. состояний многоатомных молекул. В частности, справедлива теорема Яна — Теллера если при нелинейной симметричной конфигурации ядер многоатомной молекулы имеется вырождение электронных состояний и эти состояния относятся к одному и тому же вырожденному типу симметрии, то при колебаниях всегда найдется такое смещение ядер от исходного положения, при к-ром Э.-к, в. приводит к расщеплению уровня вырожденных состояний и к пони-женшо электронной энергии хотя бы одного из состояний по сравнению с ее величиной для исходной симметричной конфигурации. На пов-сти потенц. энергии появляется несколько минимумов, соответствующих ядерным конфигурациям более низкой симметрии. Такие искажения симметричной ядерЕгой конфигурации, сдвиги электронно-колебат. уровней под влиянием Э.-к. в. и переходы от конфигурации одного минимума к конфигурации др. минимума наз. эффектами Яна — Теллера. Для линейных молекул аналогичное утверждение о понижении энергии при деформац. искажениях линейной конфигурации наз. теоремой Реннера — Теллера. [c.701]

    Квадратный циклобутадиен (С Н ) имеет четыре тг-орби-тали связывающую орбиталь, две вырожденные несвязывающие орбитали и разрыхляющую орбиталь. На этих четырех орбиталях необходимо разместить четыре электрона два могли бы занять связывающую орбиталь и по одному с параллельными спинами - вырожденные несвязывающие орбитали (правило Гунда). Такое предположение ошибочно, потому что нет никаких причин ожидать, что циклобутадиен будет квадратным на самом деле более низкой энергией, вероятно, должна обладать продолговатая форма с четырьмя л-электронами на двух изолированных двойных связях (теорема Яна-Теллера). Эксперимент подтверждает, что циклобутадиен ведет себя как очень напряженный циклоолефин, а не как бирадикал. [c.92]

    Шведские квантовые химики теоретически проанализироали" возможность существования наименьшего устойчивого фуллерена Сго-Полностью симметричная молекула Сго имеет структуру додекаэдра. Расчет такой высокосимметричной структуры показал, что ее основное электронное состояние пространственно вырождено. Согласно теореме Яна-Теллера вырожденное состояние геометрически неустойчиво и деформация молекулы должна приводить к понижению симметрии. Не углубляясь в тонкости этой сложнейшей работы, можно отметить основные параметры молекулы, найденные в результате расчетов в основном состоянии полициклическая каркасная структура молекулы С20 имеет симметрию Озь и триплетное основное электронное состояние. Фуллереновая структура молекулы С20 должна быть вполне устойчивой, так как линейные структуры ацетиленового или кумуленового типа имеют значительно более высокую энергию. [c.166]

    Кроме того, на структуру комплексов переходных металлов распространяется теорема Яна—Теллера, согласно которой идеально симметричная конфигурация атомных ядер в комплексе дестабилизируется с целью устранения вырождения. Как правило, эта теорема оказывается справедливой для любой нелинейной молекулы и может применяться как к возбужденному, так и к основному состоянию. Этот эффект Яна—Теллера встречается у комплексов с вырожденным основным состоянием, т. е. с состоянием Eg или Tig, для тетраэдрических структур Е или Т. Согласно теореме Яна—Теллера, такой октаэдрический комплекс не может оставаться совершенным, а испытывает деформации. В случае тетраэдрической симметрии эта деформация соответствует сжатию. В качестве примера для иллюстрации теоремы Яна—Теллера с помощью простой электростатической модели можно взять какой-нибудь комплексный ион меди (II) с координационным числом 6, скажем [Си(Н20)е] +. Если бы образовался правильный октаэдр, то основым состоянием было бы Eg, а электронной конфигурацией — (i g) (е )- Однако, поскольку eg-электроны распределены неравномерно, электростатическое взаимодействие оказывается более сильным вдоль оси z, т. е. положительный заряд ядер в направлении этой оси менее экранирован, чем в направлениях осей X и у. Вследствие этого микросимметрия возникающего комплекса уже более не является строго октаэдрической, а деформи- [c.55]

    Нарушение октаэдрического расположения лигандов может произойти и при полной их равноценности вследствие проявления эффекта Яна — Теллера. В соответствии с теоремой Яна — Теллера, максимально симметричное расположение лигандов сохраняется лишь в том случае, когда основное состояние является невырожденным. Если же основное сортояние комплекса вырождено, то происходит деформация комплекса и он приобретает такую конфигурацию, при которой основное его состояние становится невырожденным. [c.27]

    Деформация октаэдра, в соответствии с теоремой Яна — Теллера, может наблюдаться не только в основном, но и в возбужденном соснаянии, так как все электронные конфигурации нри переходе в возбужденное состояние (переход электрона с о - на е -орбиты) становятся вырожденными. [c.28]

    Эффект Яна—Теллера. В 1937 г. Ян и Теллер показали, что. .в общем нелинейная молекула не может быть устойчива в вырожденном элактронном состоянии. Молекула должна претерпеть такое искажение геометрии, которое привело бы к снятию вырождения. Одной из наиболее важных областей применения этой теоремы Яна.—Теллера оказалась стереохимия комплевсов иолов некоторых переходных металлов. [c.438]

    Из рис. 26.16 видно, что для конфигураций tigeg и tigel искажение октаэдра вызывает стабилизацию системы. Таким образом, из теоремы Яна — Теллера непосредственно следует, что октаэдрические комплексы ионов с такой конфигурацией должны быть искажены. Однако для конфигураций i g, tг el и не должно быть никакого искажения. Кроме того, из предыдущего должно быть ясно, что октаэдрические комплексы высокоспинового иона с конфигурацией ti гg также должны быть искаженными. В качестве примера можно привести следующие реально существующие комплексы  [c.75]

    Соединения маргани.а((11). Основное состояние Мп " в октаэдрическом поле в соответствии с теоремой Яна — Теллера претерпевает искажение. Из-за нечетного числа е -электронов это искажение должно быть достаточно большим (стр. 75), как и в случае соединений Сг" и Си". Оно заключается в заметном удлинении двух транс-связей при незначительном различии остальных четырех связей. В нескольких случаях это действительно удалось обнаружить. Так, МпРд построен в основном так же, как УРд, т. е. каждый ион Мп + или окружен октаэдром из ионов Р. Но две связи Мп—Р имеют длину 1,79 А, две другие 1,91 А и оставшиеся две — 2,09 А. В молекуле Мп(0Н)0 каждый ион Мп + окружен четырьмя атомами кисторода в плоскости с расстояниями 1,85 и 1,92А, а два атома О удалены более чем на 2,30 А. Шпинельная структура Мп 04 также искажена ионы Мп + занимают тетраэдрические пустоты, а ионы Мп +—октаэдрические за счет искажения октаэдров решетка этого соединения в конечном счете превращается из кубической в вытянутую тетрагональную. Правда, в случае Мп(асас)з шесть атомов кислорода расположены по октаэдру, и упомянутое выше искажение не наблюдается [61. Причины этого не вполне понятны. Можно предположить, что в данном соединении я-система хелатных колец вносит в поле лигандов элемент значительно бо-тее низкой симметрии (Од), и это, видимо, как-то препятствует проявлению эффекта Яна — Теллера. Остается установить, каким именно образом. [c.258]

    Для такой нелинейной системы с остаточным орбитальным вырождением теорема Яна—Теллера утверждает, что система будет сильно связана с теми колебаниями решетки, которые снимают вырождение и понижают энергию основного состояния [366]. Тетрагональное или ромбическое искажение снимает вы-роледение в отличие от тригонального искажения. Таким образом, даже в кристаллах (например, АЬОз), у которых довольно большая тригональиая компонента, кристаллическое поле не снимает вырождения. В зависимости от знака искажения один из двух крамерсовых дублетов должен лежать ниже. Если состояние, соответствующее 10), лежит ниже, то следует рассмотреть систему, аналогичную разобранной в разд. 11-7а, для которой было показано, что [c.362]


Смотреть страницы где упоминается термин Теорема Яна Теллера: [c.112]    [c.214]    [c.215]    [c.177]    [c.179]    [c.193]    [c.177]    [c.179]    [c.62]    [c.273]    [c.438]    [c.73]    [c.233]   
Химический энциклопедический словарь (1983) -- [ c.701 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.701 ]




ПОИСК





Смотрите так же термины и статьи:

Теллер

Теорема



© 2025 chem21.info Реклама на сайте