Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфорная кислота определение мышьяка

    В аналитических целях используют аммоний молибденовокислый для открытия и количественного определения фосфорной кислоты торий азотнокислый — для гравиметрического, титриметрического и колориметрического определения фторидов уранил азотнокислый — для титриметрического определения мышьяка, гравиметрического определения ванадия и как микрохимический реактив на уксусную кислоту и перекись водорода цирконий азотнокислый — для осаждения и отделения малых количеств фосфатов. [c.34]


    Для определения мышьяка в фосфоре, фосфорной кислоте и других соединениях фосфора предложен ряд фотометрических методов [192,839,940, 941]. По одному из них [839] для определения мышьяка в фосфорной кислоте его экстрагируют хлороформом в виде диэтилдитиокарбамината, заканчивают анализ фотометрированием мышьяковомолибденовой сини. При использовании навески в 10 г чувствительность метода составляет 2-10 % Аз. [c.175]

    Определению мешают кремневая и фосфорная кислоты. Селенистая и теллуристая кислоты в кислой среде образуют осадки с молибдатом аммония и поэтому должны отсутствовать. Небольшие количества селеновой и теллуровой кислот, а также олова и сурьмы не мешают осаждению германия. Определение можно осуществить в присутствии небольших количеств мышьяка, если указанное выше соединение осаждать на холоду. [c.350]

    Для определения мышьяка в фосфорной кислоте с его содержанием 1-10 —1-10 2о/о описан спектральный метод [320]. [c.175]

    Качественное определение примесей в фосфорной кислоте. Определение мышьяка. К 2 мл кислоты добавляют 10 мл раствора хлористого олова, подкисленного соляной кислотой. После кипячения в течение получаса раствор не должен пожелтеть или приобрести коричневый цвет. [c.302]

    Радиоактивационные методы [475] позволяют определять до 5-10 % Аз в фосфорной кислоте с ошибкой 10—20%. Для определения малых количеств мышьяка в чистом фосфоре также рекомендован радиоактивационный метод [517]. [c.175]

    Александрова М. В. и Александров В. И. Способ определения мышьяка в рудах, шлаках и огарках. Описание изобретения к авт. свидетельству № 75289 .1949). Свод изобретений Союза ССР. 1949 г. М., Стандартгиз, 1949, вып. 5, с. 469. 2870 Алексеев Р. И. Количественное разделение и определение анионов фосфорной, мышьяковой и кремневой кислот посредством избирательного извлечения.Зав. лаб., 1945, и, № 2—3, с. 122—134. Библ. 21 назв. [c.121]

    Из второстепенных составных частей руд на определение фосфорной кислоты оказывают влияние мышьяк, титан и ванадий. [c.50]

    Определение следов мышьяка имеет очень большое значение, поскольку в малых количествах мышьяк присутствует во многих веществах в крови, в кожуре плодов, желатине, табаке, в красителях, применяющихся для окраски пищевых продуктов, фосфорной кислоте, металлической меди, в костях, в солоде, сахаре, природных водах, пиритах, растениях, в топливе и золе, в маслах и т. д. Точность колориметрических методов определения мышьяка часто невелика, но они очень чувствительны и дают возможность обнаруживать самые малые следы этого элемента. [c.904]


    С индикатором нитхромазо разработаны методики определения сульфат-ионов в фосфорной кислоте [709], в фосфор-, мышьяк- и металлосодержащих органических соединениях [710—713], в природной и котловой воде в присутствии фосфатов [714, 715, в биологических материалах [715—7171, в газах контактных сернокислотных цехов [718], растворах электролитов [719—721], гипсе и цементе [722], удобрениях [723]. [c.76]

    Препятствующие анализу вещества. Определению мешают ионы фосфорной и кремневой кислот, образующие молибдатные комплексы. Поэтому при определении мышьяка его предварительно отделяют от кремния и фосфора. Оптимальная кислотность при образовании мышьяково-молибденовой сини соответствует 0,25 н, раствору серной кислоты. [c.275]

    Относительная прочность ГПК и общие принципы определения фосфора, кремния и мышьяка при их взаимном присутствии рассмотрены в I томе [I] данной монографии. Наиболее точные результаты получаются при определении фосфора и мышьяка. Кремний образует по крайней мере две модификации ГПК, заметно отличающиеся по оптическим свойствам. Скорость перехода одной модификации в другую (как для желтых, так и для синих кремнемолибденовых комплексов) зависит от ряда факторов, например от концентрации электролитов. Кроме того, реакционная способность кремневой кислоты по отношению к молибденовому реагенту зависит от размера частиц золя кремневой кислоты и от предварительных условий образования. В частности, при анализе металлов кремний, который входит в состав силицидов, определяется надежно, тогда как кремний шлаковых включений обычно не реагирует с молибдатом. В то же время образовавшийся кремнемолибденовый комплекс не разлагается при действии довольно концентрированных кислот, ряда посторонних комплексантов, в том числе фосфорной кислоты, которая разрушает фосфорномолибденовый комплекс с образованием бесцветных 9-молибденовых комплексов. [c.75]

    При определении фосфора и мышьяка в соляной кислоте по норме 5 10 % требуется предварительно отделять эти элементы друг от друга, так как мышьяковая кислота в присутствии молибдена и в близких условиях кислотности также образует гетерополикислоту, как и фосфорная кислота. Следовательно, присутствие мышьяка (V) может мешать определению фосфора и наоборот. [c.96]

    В кислой среде мышьяк дает три-четыре полярографические волны, которые по своей форме отличаются одна от другой при различных значениях pH и при использовании разных электролитов. Для определения мышьяка применялись следующие среды соляная [22], серная и азотная кислоты [23], смесь соляной и фосфорной кислот 24], смесь винной и фосфорной кислот [25]. Для определения мышьяка в минеральных водах применяется метод, в котором фоном служит соляная кислота [29]. [c.247]

    При полярографическом определении общего мышьяка в фосфорной кислоте для полупроводниковых целей пятивалентный мышьяк в первую очередь восстанавливают до электрохимически активного трехвалентного мышьяка нагреванием с сульфитом иатрия до 115°С. При оптимальной концентрации фосфорной кислоты 9,5 М пятивалентный мышьяк восстанавливается с хорошей воспроизводимостью на 88—89%. Для количественного определения мышьяка пригоден первый пик при —0,50 В, хотя и его высота и потенциал значительно зависят от концентрации фосфорной кислоты. Минимально можно определить примерно 50 нг/г со стандартным отклонением 5— 8%. Определению мышьяка может мешать свинец, его =—0,42 В. Содержание свинца, как правило, ниже 50 нг/г, так что его влияние на полярограммах не проявляется. При более высоких концентрациях свинец можно отделить электровосстановлением на ртутном электроде при потенциале —0,475 В [93]. [c.193]

    После удаления мышьяка добавляют обычно фосфорную кислоту для связывания олова и поднимают температуру до 160-1 5° для отгонки сурьмы. При этой температуре перегонка хлорида сурьмы происходит без затруднений, если фосфат олова (IV) не находится в растворе в таком большом количестве, что образуется тяжелый осадок его. В последнем случае рекомендуется отгонять сурьму без добавления фосфорной кислоты при этом вместе с сурьмой отгоняется значительное количество олова. Для определения олова берут тогда другую, меньшую по величине навеску. Если анализируемая проба содержит большое количество сурьмы, вследствие чего время перегонки значительно удлиняется, то в дистиллят вместе с сурьмой перейдет и некоторое количество олова, даже если была прибавлена фосфорная кислота. В этом случае дистиллят, содержащий сурьму, перегоняют вторично и остаток в колбе присоединяют к первому остатку для определения олова. [c.90]

    При осторожном сухом озолении растений находящаяся в них фосфорная кислота остается в золе в виде солей различных металлов, преимущественно кальция. Эти соли растворяют соляной кислотой. Дальнейшее определение основано на способности фосфорной кислоты давать голубое окрашивание с молибденовокислым аммонием в присутствии олова. Интенсивность окрашивания пропорциональна содержанию в растворе фосфорной кислоты. Аналогичную реакцию дают соединения мышьяка, но в растениях они практически не содержатся. [c.315]


    Определение следов мышьяка имеет очень большое значение, поскольку в малых количествах мышьяк присутствует во многих веществах в крови, в кожуре плодов, желатине, табаке, в красителях, применяющихся для окраски пищевых продуктов, фосфорной кислоте, металлической [c.727]

    Хром. Навеску хрома высокой чистоты растворяют в азотной кислоте, после восстановления серы до H2S иодистоводород-, ной кислотой фотометрируют в виде метиленового голубого [1447]. При растворении хрома в фосфорной кислоте сера полностью переходит в сероводород, определение заканчивают, как и в предыдущем случае [467]. Мешает вольфрам мышьяк и фосфор не мешают. Чувствительность определения 1-10 %. [c.200]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Метод Вашака и Шедивеца с применением пиридинового раствора диэтилдитиокарбамината серебра используется для определения мышьяка в чугуне, железе и сталях [1173], пиритах и огарках [1037, 1038], свинце высокой чистоты [850] и в металлическом свинце [799], нефтепродуктах [485, 862, 995], меди и ее солях [799, 912], пищевых продуктах [1118], природных водах и рассолах [673, 958, 1099, 1144], органических соединениях [787, 802], силикатных материалах [781], сере [509, 1096], поваренной соли [958], двуокиси германия [343, 670], олове, висмуте, селене и теллуре [799], серной [799], фосфорной [839] и азотной [621] кислотах, вольфрамовом ангидриде и вольфрамовой кислоте [536], плавиковой [621, 911] и соляной [621] кислотах, воздухе [1059], отопительном газе [1179], бромистоводородной кислоте и фторидах металлов [911], биологических материалах [824]. [c.72]

    Определение микроколичеств мышьяка в сталях методом квадратно-волновой полярографии описано в ряде работ [704, 805, 1069, 1105]. В работе [805] предложено определять мышьяк в сталях одновременно с медью, сурьмой и свинцом на фоне фосфорной кислоты. Шушич и Пьещич [1110] описали экстракционно-полярографический метод определения мышьяка в сталях. Косвенное экстракционно-полярографическое определение мышьяка в сталях, основанное на экстракции 12-молибдомышьяковой гетерополикислоты и полярографировании молибдена, описано в работе [504]. [c.86]

    Для определения мышьяка в фосфорной кислоте предложен метод, основанный на выделении мышьяка в виде арсина, поглощении арсина 0,01 N раствором иода и измерении оптической плотности поглотительного раствора. Величина оптической плотности обратно пропорциональна содержанию мышьяка в пробе. Получаемые результаты более воспроизводимы, чем результаты, получаемые по методу Гутцайта [940, 941]. [c.175]

    В то время как у мышьяка и фосфора координационное число разно 4, у сурьмы оно р авно 6 и ее высшая кислородная кислота НуЗЬОе имеет иную форму, а поэтому и совершенно иные свойства, чем мышьяковая и фосфорная кислоты. Это — крайне слабая кислота. Обычно в ней замешкается на металл лишь один атом Н. Ее натриевая соль ЫаНеЗЬОб, ошибочно принимавшаяся ранее за пироантимонат, в аналитической химии используется как реактив на калий. Ее анион, как установлено структурным анализом, имеет конфигурацию октаэдра. Висмут стехиометрически достаточно определенных соединений с валентностью 5 во-ч>бще не образует. [c.372]

    Рувинская Р. В. Определение мышьяка в сурике методом спектрального анализа. Зав. лаб., 1950, 16, № 1, с. 106—107. 3414 Рудин В. Д. Количественный микро-химиче-ский метод определения фосфорной кислоты [в фосфоритах, анатито-нефелиновых рудах, апатитовом концентрате и суперфосфате]. Тр. Ставроп. с.-х. ин-та, 1948, вып. 3, с. 313—323. Библ. 9 назв. 3413 Рудин В. Д. и Чайковская И. В. Фотоколориметрический метод определения фосфорной кислоты в удобрениях. Зав. лаб., 1941, 10, № 2, с. 213. 3416 [c.208]

    Определение фосфорной кислоты в рудах, содержащих мышья к. Небольшие количества мышьяка не оказывают существенного влияния на результаты определений, если при осаждении цолиб-деновокислым аммонием наблюдать за тем, чтобы температура не поднималась выше 70° С и чтобы избыток азотной кислоты не был слишком мал. При высоком содержании мышьяка его удаляют выпариванием с хлористым железом, бромистозоэдродной кислотой или бромистым аммонием и концентрированной солялой кислотой. Из остатка обычным способом выделяют фосфорную кислоту и определяют по одному из указанных выше методов. [c.52]

    При действии на раствор германия сероводородом в присутствии плавиковой или щавелевой кислот осадок GeSj не выпадает, что можно использовать для отделения германия от мышьяка, сурьмы и олова. В дальнейшем, однако, вследствие сложности определения германия в присутствии плавиковой кислоты, раствор необходимо выпарить для ее удаления. Во избежание потерь германия к раствору перед выпариванием следует добавить серную или фосфорную кислоту. [c.327]

    В качестве реагента использован 2,2,4-триокси-3-арсоно-5-хлоразобензол (резарсон) [379], отличающийся высокими чувствительностью и избирательностью. Комплекс германия с резарсоном образуется в среде 3—5,5 М фосфорной кислоты, раствор не надо стабилизировать с помощью защитного коллоида. Кривая поглощения комплекса имеет максимум в области 500 нм. Закон Бугера — Ламберта — Бера соблюдается при концентрации Ge 2 мкг/мл. Оптическая плотность растворов изменяется в зависимости от концентрации фосфорной кислоты, резарсона, температуры среды и других факторов. Хорошая воспроизводимость получена при работе в среде 3 М Н3РО4 при точном дозировании растворов реагентов и проведении одновременных измерений оптической плотности стандартного и исследуемого раствора. Стандартное отклонение 5 = 0,12% (абс.). Метод позволяет определять германий в присутствии В, F, Si, Р, С1, Мп, Fe, u, As, Mo, Sn, W, P, Hg и др. без их предварительного отделения. Найдены условия определения германия, бора и кремния (или фосфора, мышьяка) в одной навеске, что существенно сократило продолжительность анализа и его трудоемкость. [c.188]

    Мышьяк можно определять комплексонометрически лишь косвенным путем. В литературе описаны методы, основанные на различных принципах. Малинек и Рехак [56 (31)] используют методы, разработанные для определения фосфорной кислоты (см. стр. 299), для определения аналогично реагирующей мышьяковой кислоты. Известным способом арсенат-ион осаждают в сильноаммиачном растворе магнием, промытый осадок растворяют в соляной кислоте и к анализируемому раствору добавляют избыток титрованного [c.304]

    Ю. И. Усатенко и О. В. Дaцeнкo Ю. Ю. Лурье и Н. А. Филиппова применили ионообменные процессы в анализе сплавов. Усатенко и Даценко пользовалась вофатитом Р при определении фосфора в фосфористой меди и в феррофосфоре. Выделенную фосфорную кислоту оттитровывали в первом случае через 30 мин. и во втором случае через 1 час. Лурье и Филиппова путем ионного обмена выделили фосфор, серу и мышьяк из металлических никеля и меди. Из раствора, полученного после растворения никеля или меди, катионит задерживает катионы никеля или меди, а сера, фосфор и мышьяк в виде анионов проходят в фильтрат, где могут быть определены с большой точностью. Емкость катионита в аммиачной среде оказалась значительно больше, чем в кислой среде. Эти исследования показали, что для успешного разделения смесей ионов, получаемых при растворении различных сплавов, необходим подбор условий, зависящий от качественного и количественного состава разделяемой смеси. [c.123]

    КИСЛОТНОЙ ВЫТЯЖКИ. Испытанные нами обычные методы осаждения фосфатов (магнезиальной смесью, реактивом Фиске и Суббароу) не дали удовлетворительных результатов без добавления носителя, так как осаждение бывает очень неполным, а в некоторых случаях даже совершенно не происходит. Выделение минеральной фракции фосфора (ортофосфато в) оказалось наиболее полным при экстракции фосфррно-молибденовых гетерополикислот изоамиловым спиртом аналогично тому, как это применяется Р. И. Алексеевым (1945) при определении орто-фосфорной кислоты в присутствии мышьяка и кремния и других фосфорных кислот. Измерение радиоактивности Р производилось при помощи изготовленного автором торцового счетчика типа Т-25-Е)ФЛ и стандартной регистрирующей аппаратуры. Определение общего содержания меченого фосфора в растениях производилось в навесках измельченного сухого материала по 100—200 мг, которые помещались в специально изготовленные чашечки из целлулоида. При исследовании обмена фосфорных соединений в растении все выделенные фракции подвергались озолению (мокрому или сухому), после которого производилось осаждение в виде фосфорномолибденовото комплекса (по Лоренцу). С помощью специально сделанного несложного прибора изготовлялись стандартные осадки на фильтровальной бумаге, что обеспечивало высокую воспроизводимость результатов определения радиоактивности. [c.114]

    Если в органическом веществе кроме фосфора содержится также мышьяк, в результате разложения получается смесь фосфорной и мышьяковой кислот. Последнюю нужно удалить как перед весовым, так и перед колориметрическим определением фосфора. Разработан микроспособ разделения фосфорной и мышьяковой кислот Пятивалентный мышьяк восстанавливают гидразином в солянокислом растворе и отгоняют в виде треххлористого мышьяка, пропуская медленный ток хлористого водорода. Вещество разлагают азотной или серной кислотой, в зависимости от того, каким методом определяют фосфор. При весовом методе определение производят в азотнокислом растворе, при колориметрическом — в сернокислом, а при нефелометрическом — в солянокислом. В этом случае остаток после выпаривания растворяют в соляной кислоте. [c.205]


Смотреть страницы где упоминается термин Фосфорная кислота определение мышьяка: [c.65]    [c.172]    [c.121]    [c.138]    [c.97]    [c.519]    [c.396]    [c.378]    [c.88]    [c.306]    [c.231]    [c.445]    [c.475]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфорная кислота определение



© 2024 chem21.info Реклама на сайте