Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение металлов в фосфорной кислоты

    В последнее время разработаны очень точные методы хроматографического разделения, позволяющие получать все аминокислоты с выходом, составляющим 99% их общего содержания в белке. Кроме них в составе протеинов могут быть в определенных количествах другие вещества углеводы, липиды, металлы, фосфорная кислота и иные соединения. Целый ряд (еще не менее 20) редко встречающихся аминокислот был обнаружен в различных протеинах в разное время. [c.23]


    При работе со слоем силикагель — гипс образуется нерастворимый фосфат кальция, который мешает разделению различных анионов фосфорной кислоты. Поэтому, как и в случае катионов щелочных металлов, работают на слоях силикагель — крахмал. [c.473]

    Интерес представляет метод разделения неметаллов и металлов. В качестве примера описан простой и удобный метод отделения борной кислоты от соли никеля поглощением последнего на катионите. В то же время применение этого метода связано с серьезными затруднениями, особенно в присутствии металлов высшей валентности. Так, например, отделение трехвалентного железа от фосфорной кислоты возможно лишь ограниченно. Для поглощения фосфорной кислоты на анионите необходимо перевести молекулы фосфорной кислоты в анионы для этого следует повысить pH раствора. Однако при этом будет осаждаться железо, захватывая ион фосфата. Если же применять сильнокислую среду, когда гидроокись и фосфат железа полностью растворимы, то будет подавлена диссоциация фосфорной кислоты. Это уменьшает ее поглощение на анионите. Затруднение усиливается также в связи с конкуренцией со стороны других анионов, введение которых неизбежно при подкислении. [c.54]

    И РгОа [20]. В этом случае определение металлов затруднено присутствием фосфорной кислоты, и наоборот, определению фосфорной кислоты мешают ионы металлов. Анализируемый раствор пропускают через колонку с катионитом в Н-форме. Затем ионит промывают водой. Фосфорная кислота полностью переходит в промывные воды и легко в них определяется. Ионы металлов, поглощенные катионитом, количественно выделяются при последующем пропускании соляной кислоты. Содержание металлов нетрудно определить, так как раствор уже не содержит фосфат-иона. После промывки водой ионообменная колонка снова готова к использованию. Таким образом, на ней можно последовательно производить сотни определений. В литературе предложено большое число аналитических разделений, подобных описанному. [c.22]

    Ход разделения металлов в присутствии фосфорной кислот  [c.229]

    Трудности, с которыми было сопряжено освоение процессов с жидкостным и горячим газовым рециклом, с одной стороны, а также экспериментальное выявление отрицательного влияния воды на степень превращения карбамата аммония в карбамид, с другой, послужили стимулом к изысканию иных путей возврата в цикл аммиака и двуокиси углерода, не превращенных в карбамид. В 1936 г. Лоуренсом [37] был предложен способ возврата в цикл синтеза двуокиси углерода, основанный на поглощении из газов дистилляции аммиака водными растворами сульфата, нитрата либо фосфата аммония, содержащими соответственно серную, азотную либо фосфорную кислоты. Одновременно фирмой Фарбениндустри [38] был запатентован способ отделения кислых газов (СОа, НзЗ) от аммиака с помощью аминов. Позднее были разработаны и другие способы разделения газовых смесей, основанные на избирательном поглощении аммиака или двуокиси углерода растворами различных веществ соды [39—42], поташа [43—45], аминов [46—49], многоосновных кислот [50], гидроокисей щелочноземельных металлов [51], нитрата аммония [52—55], нитрата аммония и карбамида [53, 56]. [c.208]


    ИОНИТЫ — твердые, практически нерастворимые в воде и органических растворителях вещества, способные обце-нивать свои ионы на ионы раствора. Sto природные или синтетические материалы минерального или органического происхождения. Подавляющее большинство современных И.— высокомолекулярные соединения с сетчатой или пространственной структурой. И. делят на катиониты (способные обменивать катионы) и аниониты (обменивают анионы). Катиониты содержат сульфогруппы, остатки фосфорных кислот, карбоксильные, оксифениль-ные группы, аниониты — аммониевые или сульфониевые основания и амины. Обменную емкость И. выражают в миллиграмм-эквивалентах поглощенного иона на единицу объема или на 1 г И. Природные или синтетические И.— катиониты — относятся преимущественно к группе алюмосиликатов. Аниониты — апатиты, гидроксиапатиты и т. д. Метод ионного обмена очень широко используется в промышленности и в лабораторной практике для умягчения или обессоливания воды, сахарных сиропов, молока, вин, растворов фруктозы, отходов различных производств, удаления кальция из крови перед консервированием, для очистки сточных вод, витаминов, алкалоидов, разделения металлов и концентрирования ионов. И. применяют как высокоактивные катализаторы в непрерывных процессах и т. п. [c.111]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Экстракция получает широкое применение в технологии редких металлов для разделения близких по свойствам элементов [301. Так, для разделения рубидия и цезия наиболее перспективными из опробованных в настоящее время экстрагентов являются замещенные фенолы цирконий и гафний разделяют в промышленности экстракцией родапидов этих метал.лов метализобутилкетоном или нитратов трибутилфосфатом. С помощью этих экстрагентов можно разделить также ниобий и тантал из растворов смесей плавиковой и других минеральных кислот. Молибден и вольфрад разделяются при экстракции ацетофеноном. Редкоземельные элементы делят экстракцией грибутилфосфатом в присутствии высаливателей или из концентрированных растворов азотной кислоты. Хотя коэффициенты разделения соседних пар элементов малы, при наличии нескольких десятков ступеней экстракции возможно получить индивидуальные РЗЭ в чистом виде. Более высоким коэффициентом разделения при экстракции РЗЭ характеризуется ди-2-этилгексил-фосфорная кислота. [c.13]

    Можно было предполагать, что из кислых растворов удобнее поглощать не фосфорную кислоту на анионите, а отделять железо на катионите. Действительно, при малом содержании железа в среде 0,3 н. соляной кислоты удается отделить железо, а также кальций, магний и другие элементы поглощением на катионите. Однако при больших количествах железа возникают затруднения в связи с образованием катионных форм фосфатных комплексов железа типа Ре(Н2Р04)2+. Эти катионы также поглощаются на катионите, в результате чего фосфорная кислота не отделяется от железа. Образование катионных комплексов при взаимодействии многозарядного иона металла, находящегося в избытке с анионом слабой кислоты, наблюдается часто, что препятствует многим разделениям. [c.54]

    Была показана возможность использования для разделения других нерастворимых в воде неорганических материалов, например фосфатов циркония. Путем осаждения циркони л-ионов с фосфатами щелочных металлов или фосфорной кислотой были синтезированы соединения с различным соотношением 2гОг Р2О5. Другие соединения с подобными свойствами были синтезированы с использованием мышьяковой, молибденовой и вольфрамовой кислот (вместо фосфорной кислоты) и титана, олова или тория (вместо циркония). [c.473]


    Хроматографическое поведение ионов металлов на бумаге, обработанноТ сложными эфирами фосфорной кислоты. Использование триаллилфосфата для разделения смеси UOf , u + и iFe +. [c.520]

    Отличительной чертой хроматографических методов является возможность их широкого применения. Хроматография может быть использована ДЛЯ разделения как больших, так и малых количеств элементов. Она может быть с одинаковым успехом применена к органическим и неорганическим веществам, для больших и малых молекул, для анионов и катионов. Кроме того, имеется возможность применять разнообразшле растворители и элюенты. В области-аналитической химии хроматография открывает большие возможности для разделения редкоземельных металлов, для отделения ниобия от тантала, гафния от циркония и т. д. Она может приобрести также большое значение для упрощения некоторых продолжительных методов анализа. Так, например, при определении пятиокиси фосфора в апатите сначала из раствора - Саз(Р04)а извлекают хроматографически ионы Са +, а затем титруют освобожденную фосфорную кислоту. Техника хроматографии разнообразна, но для аналитических [c.183]

    К нейтральным экстрагентам, содержащим так называемые электродонорные атомы, отдающие электроны, относятся 1) альдегиды (например, фурфурол для извлечения кобальта, очистки смазочных масел) 2) кетоиы (например, циклогексанон или метилизобутилкетон для выделения германия, урана, разделения тантала и ниобия из растворов сильных кислот 3) спирты (СС4—Се) для извлечения металлов из растворов сильных кислот в виде гидратно-сольватных, оксониевых и гидрооксониевых комплексов 4) эфиры (простые и сложные). Простые эфиры (например, р, Р -дихлорэти-ловый эфир, называемый также хлорексом, с меньшими летучестью и растворимостью в воде, чем диэтиловый эфир, и не воспламеняющийся при комнатной температуре) экстрагируют некоторые компоненты с образованием прочных комплексов, причем способность к извлечению уменьшается с увеличением молекулярной массы. Сложные эфиры (например, образующийся при взаимодействии бутилового спирта с фосфорной кислотой трибутилфосфат) широко применяют для выделения урана и редкоземельных металлов из кислых растворов. [c.49]

    Наиболее распространена в настоящее время классификация, предложенная в начале века и разделяющая белковые вещества на три основные группы простые, сложные и производные белков. К простым белкам, иначе называемым протеинами, относят те, которые при полном гидролизе образуют только аминокислоты, т. е. не содержат небелковых составных частей. В состав их входят следующие группы альбумины, глобулины, проламины, протамины, гистоны, склеропротеины, глютелины. К сложным белкам (протеидам) относят различные типы комплексов простых белков с небелковыми компонентами, такими как углеводы, нуклбиновыб кислоты, липиды, гетероциклические соединения, фосфорная кислота и др. В зависимости от природы небелковой части протеиды подразделяют на нуклеопротеиды, включающие нуклеиновые кислоты хромопротеиды, в состав которых входят различные окрашенные вещества гликопротеиды, содержащие углеводы липопротеиды, содержащие липиды металлопротеиды, включающие металлы фосфопротеиды, содержащие фосфорную кислоту. Это разделение на группы далеко не точно, так как, например, в составе характерных простых белков часто содержится некоторое количество небелковых компонентов (в альбуминах — углеводы) и т. д. Производные белки представляют собой группу, которая охарактеризована в наименьшей степени. Чаще всего здесь раньше имели в виду продукты, получающиеся в результате тех или иных изменений белков, например их энзиматического гидролиза. В последние годы из названий веществ этой группы наиболее применяются (сохранились) два — про-теозы и пептоны. И те, и другие являются продуктами неполного [c.36]

    Анализ полифосфорных кислот мож Но выполнять различными методами химическим, хроматографичесним, электрохимически м и другими. В практику заводских и научно-исследовательских лабораторий пока внедрены химический метод, основанный на различной растворимости поли- и метафосфатов двух- и трехвалентных металлов, и более точный, хроматографический метод, основанный на предварительном хроматографическом разделении поли- фосфорных и метафосфорных кислот по степени их полимеризации. Из различных способов хроматографирования наиболее распространена бумажная хроматография. [c.209]

    Во избежание гидролиза осаждение проводят в сильнокислых растворах. При этом выпадают малорастворимые фосфаты состава 2г (НРО г и Н (НР04)г [99, 100]. Для получения плотного легко-фильтрующегося осадка Ларсен и соавторы [101] предложили в 10%-ный раствор серной кислоты при 70—75° С одновременно вводить с помощью распылителя разбавленный кислый раствор сульфатов циркония и гафния, а также фосфорную кислоту. Последнюю вводят в количестве, необходимом для осаждения определенного количества окисей циркония и гафния. Лучшие результаты получаются в том случае, когда конечная суспензия содержит от 3,5 до 20 г л фосфатов. После отделения от раствора осадок обрабатывают охлажденным раствором, содержащим перекись натрия и едкий натр, и смесь выдерживают при 70° С. Выпавшую гидроокись отмывают от фосфатов, растворяют в серной кислоте и повторяют осаждение. Наибольший эффект разделения наблюдается при осаждении в виде фосфатов 35—45% металлов, находящихся в исходном растворе. Для получения 93—97%-ных концентратов гафния из сырья, содержащего 13% Н1, необходимо провести семь переосаждений при извлечении 10% гафния. При использовании 59%-ного концентрата достаточно четыре переосаждения с выходом гафния 30%. [c.33]

    Для определения химических форм элементов используют все инструментальные методы, обеспечивающие необходимые пределы обнаружения элементов. Для ряда элементов, главным образом, неметаллов, разработаны и применяются в практике анализа для оценки качества природных, питьевых и сточных вод методы определения как суммарных содержаний, так и различных молекулярных и ионных форм. Панример, для серы предусматривается раздельное определение сульфат-, сульфид-, сульфит- и тиосульфат-ионов [9 - 10]. При оценке содержания фосфора также раздельно определяют полифосфаты, эфиры фосфорной кислоты и растворенные ортофосфаты [9 - 10]. Содержание азота в водах характеризуется главным образом концентрацией свободного аммиака и ионов аммония, а также нитрит- и нитрат-ионов, аналогичная ситуация для пары хлорид-свободный хлор [9 - 10]. Для раздельного определения химических форм азота, фосфора, серы, хлора и других широко применяют спек-трофото-метрические методы анализа, а также различные варианты хроматографии ионной, жидкостной, газовой [9 - 10]. Определение химических форм металлов - более сложная задача, для решения которой требуются высокочувствительные инструментальные методы, обеспечивающие возможность онределения на более низком уровне концентраций, чем их реальные содержания в водах, т.е. на уровне от 1 мкг/л до 1 нг/л. В сочетании с хроматографическими методами разделения эти методы выполняют роль детекторов. Наиболее предпочтителен вариант элемент-селективного детектора, к которым и относятся большинство современных инструментальных методов (ААС, АЭС, МС), в отличие от снектро-фотометрического и электрохимических. [c.25]

    Ассортимент органических экстрагентов был значительно расширен введением аминов и содержащих кислород фосфорорганических соединений. Многообразие экстракционных свойств при использовании этих новых экстрагентов должно обеспечить разработку новых аналитических методов, особенно методов, основанных на раздельной экстракции. Сюда же примыкает и использование в качестве экстрагентов жидких катионообменников типа динонилнафталинсульфокислоты. Кроме того, экстракционная способность комплексов металлов значительно меняется с изменением валентного состояния поэтому экстракция с последующим окислением или восстановлением и реэкстракцией имеет широкие возможности в смысле обеспечения высокой избирательности разделений. При использовании смесей экстрагентов, например аминов или фосфорорганических соединений, часто наблюдаются синергетические эффекты, хотя надежная теоретическая интерпретация этого явления в настоящее время отсутствует. Так, смесь бис (2-этилгексил) фосфорной кислоты и А-втор-бутил-2-(а-метилбензил) фенола в разбавителе типа керосина гораздо лучше экстрагирует Сз (наряду со 5г и редкоземельными элементами) из водных растворов при pH 4, чем любой из экстрагентов порознь [10] в отсутствие фосфорорганической кислоты необходимо работать при рН> 12. [c.379]

    Широкое применение ШС получили для концентрирования и разделения ряда ионов [88-93]. Использование ШК в качестве ио-нообменников позволяет успешно провести разделение щелочных и щелочноземельных металлов [88, 89]. Сорбция на солях молибдено-фосфорной кислоты дает возможность сконцентрировать и разделить ниобий и титан [90], торий и иттрий [91], селен и теллур [92], торий, уран и нептуний [93] и др. [c.159]

    НОЙ кислоте барий открывают бихроматом, стронций — раствором сульфата кальция и кальций — раствором щавелевокислого аммония. В то же время количественный анализ смеси магния, кальция, стронция и бария связан с довольно значительными затруднениями. Объемный анализ позволяет методами осаждения определить магний (с фосфорной кислотой), кальций (перманганатометрически по оксалат-иону) и барий — с сульфат-ионом в присутствии родизоиата натрия. Однако все эти определения (за исключением определения магния) надежны лишь в растворах, содержащих один из щелочноземельных металлов. Аналогично обстоит дело и с весовым методом, в котором определению любого из щелочноземельных металлов обычно не мешает магний, но мешают другие щелочноземельные металлы может быть, единственным исключением является определение стронция в форме нитрата, при котором определению мешают не оба (кальций и барий) элемента, а лишь один барий. Все это делает целесообразным, а в немалом числе случаев и необходимым использование метода ионообменной хроматографии для предварительного разделения смесей щелочноземельных металлов. О работах Рейда [1] по разделению Ка и Ва уже упоминалось. На рис. 25 и 26 приведены схемы проведения процесса разделения смеси ВаС1з (0,046 М) и КаС12(0,104-Ю М). [c.152]

    Низшие спирты достаточно летучи для того, чтобы непосредственно разделять их хроматографически. Однако, как указывалось в предыдущих разделах, спирты часто встречаются в виде разбавленных водных растворов и их количественное концентрирование посредством экстракции, фракционной перегонки или путем образования производных, нерастворимых в воде, невозможно. Драверт и др. [31—33] описывают методы превращения спиртов в летучие неполярные производные, которые можно высушивать. Это превращение и сушку проводят в потоке в виде непрерывного процесса. -Методы включают превращение 1) в алкилнитриты путем этерификации азотной кислотой 2) в олефины путем дегидратации фосфорной кислотой или 3) в парафины путем восстановления на никеле Ренея. Все три операции проводят в нагреваемых реакционных трубках, установленных до ана литической колонки. К сожалению, размеры этих трубок и методы их набивки не приведены, и поэтому методы нельзя оценить критически. Во всех случаях воду, содержащуюся в исходной пробе или образующуюся в процессе превращения, удаляют, пропуская поток газа через колонку с гидридом кальция. Благодаря этому вода превращается в водород без изменения продуктов реакции спиртов. Газом-носителем для хроматографического разделения служит водород, и поэтому пик воды не регистрируется. Спирты также реагируют с гидридами щелочных или щелочноземельных металлов, образуя водород. Однако этой реакции можно избежать, превращая спирты до осушки в алкилнитриты, олефины или парафины. [c.299]


Смотреть страницы где упоминается термин Разделение металлов в фосфорной кислоты: [c.144]    [c.190]    [c.75]    [c.230]    [c.323]    [c.520]    [c.254]    [c.231]    [c.109]    [c.156]    [c.44]    [c.32]    [c.580]    [c.162]    [c.262]   
Качественный анализ (1964) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты Ба металлы



© 2024 chem21.info Реклама на сайте