Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам от фосфора и мышьяка

    Табл. 1 разделена на две части. В первой указаны соединения, содержащие серу, селен и теллур, во второй — комплексы с мостиками из атомов фосфора, мышьяка, сурьмы и висмута. В каждой части таблицы комплексы переходных элементов перечислены в следующем порядке ванадий, хром, молибден, вольфрам, марганец, рений, железо, кобальт, никель, палладий и платина. [c.302]

    Молибден, фосфор, мышьяк, вольфрам, уран, хром, ванадий, титан, цирконий, бор, вольфрамовый ангидрид или смесь молибденового ангидрида и окиси хрома кремневая и молибденовая кислоты с ванадатом хрома [c.65]


    Вольфрам, молибден, ванадий и ряд других элементов, используемых при плавке сталей и специальных сплавов в качестве легирующих добавок, находятся в природе в виде окислов, входящих в состав различных минералов. Содержание подобных элементов в руде бывает очень незначительным, до 0,15—0,20 %, поэтому руды подвергают обогащению механической, термической или химической обработкой с целью получения концентратов, в которых содержание полезного окисла достигает 45—70% при незначительном содержании вредных примесей (фосфора, мышьяка и др.). [c.255]

    Описанная обработка неприменима к минералам, состоящим в основном из фосфатов Для разложения таких минералов требуется однократное или многократное сплавление с карбонатом натрия, за исключением тех случаев, когда их исследуют на содержание одного лишь компонента (обычно тория). В водной вытяжке плава содержатся фосфор мышьяк, сурьма, олово и вольфрам, а также большая часть креМния, алюминия и урана. Остаток тщательно промывают разбавленным раствором карбоната натрия, а фильтрат выпаривают с азотной кислотой для переведения кремнекислоты в нерастворимое состояние (при этом частично выделяются также вольфрам и сурьма). После выпаривания и отделения кремнекислоты фильтрат насыщают сероводородом для удаления свинца, мышьяка и оставшейся в растворе части сурьмы. Удалив -сероводород и упарив раствор, осаждают фосфор молибденовой жидкостью (стр. 781) (которую предварительно проверяют на содержание алюминия и других осаждающихся аммиаком элементов) и заканчивают его определение, как указано в гл. Фосфор (стр. 784). Из фильтрата, выпаренного для удаления избытка азотной кислоты, выделяют алюминий двукратным осаждением аммиаком (стр. 565). Осадок промывают 2%-ным раствором нитрата аммония, прокаливают и взвешивают. [c.625]

    Сухой способ. Сплавление пробы с карбонатом натрия и обработка плава водой отделяет ванадий (V) (даже следы его) от малорастворимых окислов. Вместе с ванадием (V) в раствор переходят молибден, вольфрам, фосфор (V), мышьяк (V), хром (VI) и марганец (VI). [c.724]

    Ч. 2, в. 4/5 — гл. 9. Сера и соединения ее с металлами (с. 393—436) — гл. 10. Окисленные соединения серы (с. 436—495) —гл. 11. Сернистые соединения углерода, хлора и азота (с. 495—528)гл. 12. Аналоги серы селен и теллур, молибден и вольфрам (с. 528—552) —гл. 13. Фосфор (с. 552—615) — гл. 14. Аналоги фосфора мышьяк и сурьма, ванадий, ниобий и тантал (с. 616—651) —гл. 15. Бор (с. 651—669) —гл. 16. Алюминий или глиний (с. 669—706) — гл. 17. Кремний или силиций (с. 706—777) — гл. 18. Олово, титан, циркон и торий (с. 777—809) —гл. 19. Платина и ее спутники палладий, родий, рутений, иридий и осмий (с. 809—839) — гл. 20. Двойные соли и аммиачные соединения платины и ее аналогов (с. 839—874) —гл. 21. Золото (с. 874—884) —гл. 22. Ртуть (с. 884—905) — гл. 23. Талий, свинец и висмут (с. 905—937) — Заключение (с. 937—9[c.158]


    ЭТОЙ границы, т. е. азот, углерод, бор, фосфор, бериллий, кремний, хром, марганец, алюминий, рений, вольфрам, цинк, мышьяк, молибден, золото, ниобий, медь, тантал и др. [c.71]

    Суспензия окиси цинка не должна показывать щелочной реакции по фенолфталеину. В присутствии большого количества железа (III), что имеет место, например, при анализе стали, после окисления раствора пробы, осадок от окиси цинка будет содержать все железо, вольфрам, ванадий, хром, уран, цирконий, титан, алюминий, фосфор, мышьяк, олово и почти полностью медь, молибден и кремний. Железо (II), вольфрам (если они не [c.100]

    Помимо приведенных выше, известен еще ряд методов определения молибдена, но они большого интереса не представляют, хотя некоторые из них, как, например, метод осаждения нитратом ртути (I) из почти нейтрального карбонатного раствора, дают весьма точные результаты при анализе чистых растворов молибдена. Нитратом ртути (I) осаждаются также хром, ванадий, молибден, вольфрам, фосфор и мышьяк, и эта реакция в отдельных случаях применяется лишь для предварительного выделения молибдена из карбонатных растворов, получаемых в результате выщелачивания водой плава породы с карбонатами щелочных ме-таллов . [c.338]

    Затем к этому холодному щелочному раствору прибавляют достаточное количество нитрата ртути (I), чтобы образовался значительный по величине осадок карбоната ртути (I), содержащий ванадий, молибден, вольфрам, фосфор и мышьяк, находившиеся в анализируемой породе. Карбонат ртути (I) служит также для связывания кислоты, которая могла бы образоваться вследствие разложения нитрата ртути (1). Таким образом, проводя осаждение в слабощелочном растворе вместо нейтрального, избегают прибавления осажденной окиси ртути для регулирования кислотности. Образование чрезмерно большого осадка указывает на то, что реакция раствора была слишком щелочной, и тогда можно уменьшить щелочность раствора, осторожно прибавляя азотную кислоту, пока прибавленная капля раствора нитрата ртути (I) не перестанет вызывать образования мути. [c.899]

    Экстракционные методы. Наибольшее применение экстракционные методы концентрирования примесей имеют при анализе -ВОДЫ, кислот, щелочей, щелочных металлов и их солей. Характерно для этого способа концентрирование анионных форм таких элементов, как мышьяк, фосфор, вольфрам, селен, теллур, и неметаллов. Основные элементы, как правило, экстрагируют из сильно кислых сред активными кислородсодержащими растворителями в виде галогенсодержащих комплексных соединений. Такой метод отделения примесей в ряде случаев сопровождается побочными нежелательными эффектами (например, соэкстракцией). [c.202]

    В чугунах и сталях определяют углерод (графит), марганец, никель, кобальт, медь, хром, алюминий, кремний, фосфор, серу и мышьяк, а также редкие металлы — титан, ванадий, молибден, вольфрам, цирконий, ниобий, тантал и др. [c.129]

    Вольфрам можно отделить от небольших количеств олова, ниобия и тантала обработкой свежеосажденной вольфрамовой кислоты аммиаком, взятым в небольшом избытке, при нагревании. Отфильтрованный нерастворимый остаток следует тш ательно проверить на содержание вольфрама, так как некоторые элементы, главным образом железо удерживают значительные его количества. Этим методом можно отделить также мышьяк, ванадий и фосфор, если они содержатся в таких небольших количествах, которые могут быть захвачены осадком от аммиака. Об отделении вольфрама от больших количеств ниобия и тантала см. стр. 677. [c.769]

    Раствор переносят в колонку, колонку промывают сначала 30 каплями 8// НС1 + 1 НР, затем 20 каплями АМ НС1 -Ь I N НР растворы должны проходить со скоростью 5—6 капель/мин. Элюат, содержащий мышьяк и вольфрам (сюда же попадает и фосфор), собирают на мишень. [c.96]

    Фосфор. Сера. . Кальций Титан. . Ванадий Хром. . Магний. Кобальт Никель. Медь. . Цинк. . Галлий. Германий Мышьяк Ниобий. Молибден Олово. . Сурьма. Тантал. Вольфрам Свинец.  [c.150]

    Молибден и вольфрам образуют комплексные гетерополикислоты с фосфором, мышьяком, кремнием и другими элементами. Например, состав фосфорновольфрамовой гетерополикислоты Н [Р( Л 207)б]-л НгО, фосфорномолибденовой гетерополикислоты Н7[Р(Мо207)б]-НаО. Реакции образования гетерополикислот с фосфорной, мышьяковой и кремниевой кислотами являются основой фотометрических методов определения фосфора, мышьяка и кремния. Вольфрам образует комплексные анионы состава [W( 2H204)лl -, [W( 4H406)412- [c.168]

    Катализаторы, кроме кобальта и железа, содержат также металлы от V до VIII группы периодической системы Элементов — ванадий, молибден, вольфрам, ниобий, тантал, хром, марганец или их окиси свинец, олово, цинк, кадмий и твердые окиси неметаллов V группы (фосфор, мышьяк, сурьма) катализаторы обрабатывают водородом при 200°, а также сероводородом, селеноводоролом, сероуглеродом, ио-дистым водородом, например активный уголь пропитывают молибдатом аммония, азотнокислым свинцом и фосфорной кислотой и обрабатывают при 300° сероводородом или уголь пропитывают вольфраматом аммония, нитратом кобальта и пятиокисью сурьмы и обрабатывают сероводородом при 350° наконец, уголь можно пропитывать ванадатом аммония, азотнокислым кобальтом и фосфорной кислотой и нагревать при 350° с водородом и сероуглеродом в катализаторе может также содержаться окись урана [c.359]


    ДОМЕННЫЙ ЧУГУН - чугун, вы плавляемый в доменных печах. Используется с 14 в. Кроме железа и углерода, в Д. ч. содержатся кремний, марганец, фосфор и сера, иногда (в зависимости от состава руд) хром, никель, медь, титан, вольфрам и мышьяк, а в виде микропримесей — олово, алюминий, цинк, свинец, кобальт и кальций. Д. ч. подразделяют на передельный чугун, литейный чугун и специальный (см. Ферросплавы). Передельные Д. ч. используют для получения стали, поставляя их в сталеплавильные цехи в жидком виде. Из литейных Д. ч., поставляемых потребителям в виде чушек массой 18—20 кг, получают отливки. Специальные Д. ч. служат присадками для раскисления стали. Продувкой доменного литейного или передельного чугуна в ковшах гранулированным магнием получают рафинированный Д. ч. (табл.). Такой чугун содержит меньше серы и не-мета.глических включений. Марки, хим. состав и св-ва литейного рафинированного Д. ч. определены ГОСТом 5.1751-72. [c.405]

    Суспензия окиси цинка не должна показывать щелочной реакции по фенолфталеину. В присутствии большого количества железа (III), что имеет место, например, при анализе стали, после окЕСЛения раствора пробы, осадок от окиси цинка будет содержать все железо, вольфрам, ванадий, хром, уран, цирконий, титан, алюминий, фосфор, мышьяк, олово и почти полностью медь, молибден и кремний. Железо (II), вольфрам (если они не полностью окислены) и малые количества кремния, меди, молибдена, сурьмы и свинца могут оказаться в фильтрате, если они присутствовали в первоначальном растворе в значительных количествах. Фильтрат содержит марганец и кобальт почти полностью если осадок переосадить и соединить фильтраты, то отделение марганца и кобальта можно считать полным. Отделение никеля не так удовлетвори- [c.108]

    Перфторметан, а также фторуглероды с более высоким молекулярным весом реагируют со щелочными металлами при температуре около 400° с образованием фторидов металлов и углерода. Эта реакция была использована для различных методов анализа фторуглеродов и их производных. Перфторметан при 900° не взаимодействует с медью, никелем, вольфрамом и молибденом. Магний медленно реагирует с фторуглеродами даже нри 300°. Перекись натрия вызывает разложение фторуглеродов нри повышенной температуре, однако для исчерпывающей минерализации фторуглеродов, необходимой для аналитических целей, требуется нагревание до 400 — 500°. В этих же условиях цинк, алюминий и олово реагируют лишь незначительно только с поверхности, а медь, серебро, ртуть, свинец, фосфор, мышьяк, сурьма, вольфрам, железо, платина, окиси магния, кальция, бериллия, фосфорный и мышьяковый ангидриды в реакцию не вступают. [c.57]

    Мо+ и W+ образуют также своеобразный класс веществ, называемых гетерополисоединениями. Ионы гетерополисоединений, содержащих молибден и вольфрам, имеют формулы Э(Мо207)б]"-и l3(W20j)el"-, где Э —фосфор, мышьяк, кремний или бор. [c.224]

    Фосфор присутствует в стали и чугуне всех марок. Мешающими при определении фосфора элементами являются кремний, вольфрам, титан, мышьяк и ванадий. Ниже, при описании медов анализа, ук аэаны их влияние и методы отделбНия. Присутствие больших количеств хрома изменяет только способ разложения навески. - [c.68]

    К числу элементов, входящих в состав стали и влияющих на псшедейие молибдена в растворе, нужно отнести хром, ванадий, вольфрам, фосфор и мышьяк. [c.171]

    Поданным Вебстера и Файрхола, определению сурьмы мешают золото, таллий и вольфрам, так как образуют с реагентом окрашенные соединения (вольфрам дает осадок). Известно, что железо(И1) и галлий также образуют экстрагируемые хлорантимонаты, окрашенные в красный цвет. В присутствии ртути(И) иод- и бром-ионы образуют осадки. Углеводороды (ацетилен) и гидриды кремния, азота, фосфора, мышьяка, серы, селена и теллура не мешают определению сурьмы, если они поглощаются раствором хлорида р ути(П). [c.233]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Соли гетерополикислот как ионообменные сорбенты известны давно, однако применять их начали совсем недавно. В качестве синтетических минеральных ионообменников пользуются труднорастворимыми солями гетерополикислот общей формулы МзХУ12О40- Н2О, где X — фосфор или мышьяк, сурьма, кремний V — молибден или вольфрам. Простейшим представителем труднорастворимых солей гетерополикислот является фосфоромолибдат аммония (МН4)зРМо1204о. Замещение иона аммония возможно вследствие структурных особенностей соли, содержащей центральную октаэдрическую группу РОе и 12 октаэдров МоОб, в целом составляющих рыхлую решетку, в которой могут поместиться ионы даже с большим, чем у аммония, ионным радиусом. [c.45]

    При растворении в азотной кислоте сплавов, содержа шмх сурьму, олоио, мышьяк, фосфор, вольфрам, серу н и т. и., образуются со( тиетствующие кислоты, например [c.439]

    Хром. Навеску хрома высокой чистоты растворяют в азотной кислоте, после восстановления серы до H2S иодистоводород-, ной кислотой фотометрируют в виде метиленового голубого [1447]. При растворении хрома в фосфорной кислоте сера полностью переходит в сероводород, определение заканчивают, как и в предыдущем случае [467]. Мешает вольфрам мышьяк и фосфор не мешают. Чувствительность определения 1-10 %. [c.200]

    Объем ежегодного производства серной кислоты очень велик, и большая ее часть получается путем окисления сернистого газа в серный ангидрид на платиновых катализаторах или на пятиокиси ванадия [121]. Активными катализаторами являются также и другие переходные металлы — вольфрам, палладий, золото и хром, однако они не так активны и стойки, как платина. Другие катализаторы подразделяются [140] на низкотемпературные, подобно платине (особенно ванадаты натрия, калия, бария, серебра, рубидия, цезия, меди и олова), и высокотемпературные катализаторы, подобные пятиокиси ванадия (в особенности окиси вольфрама, титана, железа, олова, хрома и мышьяка). Однако в промышленности широко используются либо только платина и чистая пятиокись ванадия, либо пятиокись ванадия, промотированная сульфатами или пиросульфатами щелочных металлов. Применение платинированного асбеста в качестве катализатора было предложено еще в 1831 г., когда Филлипсу был выдан патент на этот процесс. Этот метод длительное время считался экономически не выгодным, так как ныль — неокислившаяся сера и следы ртути, мышьяка и фосфора (выделявшиеся из пиритов, использовавшихся в качестве серусодержащего сырья) — быстро отравляла платиновый катализатор. Исследования Винклера во Фрейбурге и Кпейтша и других химиков Баденской анилиновой и содовой фабрики показали, что сернистый газ и воздух можно очистить в достаточной степени впрыскиванием водяного пара и тщательной промывкой на фильтрах, пропитанных серной кислотой. [c.325]

    Прекрасным методом предварительного отделгиия мышьяка, встречающегося в малых количествах во многих материалах, является осаждение его аммиаком в виде основного арсената железа. Этот метод применяется при анализе медных и молибденовых руд. В этих случаях разложение исходного материала ведут так, чтобы весь мышьяк получился в пятивалентной форме, затем прибавляют 0,1—0,2 г соли железа (III) (если последнее не присутствует уже в растворе в достаточном количестве) на каждые 10 мг мышьяка и осаждают, как указано в гл. Молибден (стр. 360). Ряд других элементов селен, теллур, фосфор, вольфрам, ванадий, олово и сурьма — также осаждается этим методом. Применение соли алюминия вместо соли железа (III) не дает таких удовлетворительных результатов. [c.308]

    И легче растворимым. Следует помнить, что, кроме железа, амйиаком осаждаются многие другие элементы (см. стр. 102) и что осадок может захватить с собой вольфрам, ванадий, уран, мышьяк и фосфор. [c.438]

    Эти методы менее над(зжны, чем объемный метод, изложенный на стр. 659, но они обладают тем преимуществом, что ими можно пользоваться в присутствии железа. При использовании для титрования метиленовой сини солянокислый раствор хлорида титана восстанавливают цинком, предпочтительно в редукторе Джонса (стр. 135). Полученный после восстановления раствор защищают от действия воздуха, создавая атмосферу двуокиси углерода, и титруют раствором метиленовой сини до появления неисчезающей голубой окраски. Восстанавливать и титро- вать лучше горячие растворы. Присутствие азотной и серной кислот нежелательно, так как они затрудняют определение конечной точки титрования. Мешают титрованию также молибден, ванадий, вольфрам, хром и олово, которые реагируют с метиленовой синью. Метод применим в присутствии кремния, железа, алюминия, сурьмы, мышьяка и фосфора. [c.662]

    По отношению к нятиокисям ниобия ц тантала некоторыми авторами применяется термин земельные кислоты . Подобно тому, как торий обычно рассматривается совместно с группой редкоземельных металлов, так и титан иногда относят к группе земельных кислот на том основании, что эти три элемента, помимо того, что тесно связаны друг с другом в природе, обладают некоторыми общими химическими свойствами, играющими важную роль в аналитической химии. Характерной особенностью этих металлов является сильная склонность их солей к гидролизу, что дает возможность отделять их от многих других элементов. Природные титанаты, свободные от ниобия и тантала, представляют собой обычное явление ниобаты и танталаты также встречаются без титана, но как будто неизвестен в природе ниобат, совершенно свободный от тантала, так же как и танталат, не содержащий ниобия. В немногих, редко встречающихся минералах фосфор (V), мышьяк и сурьма частично замещают ниобий и тантал. Вольфрам и олово в тантало-ниобиевых минералах встречаются часто, но всегда в малых количествах. [c.663]

    Мышьяк и фосфор отделяют от вольфрама осаждением магнезиальиоц смесью из аммиачного раствора, содержащего тартрат аммония, как указано в гл. Фосфор (стр. 780). Вследствие растворимости арсената магния и аммония отфильтровашЕЫЙ осадок целесообразно не промывать, а для более полного удаления вольфрама растворять в 1 ислоте и повторять осаждение. Вольфрам можно освободить от малых количеств мышьяка добавлением достаточного для восстановления мышьяка количества сернистой или бромистоводородной кислоты, прибавлением затем избыточного количества соляной ислоты и кипячением раствора до получения небольшого объема. [c.768]

    Выделение мышьяка и вольфрама (группа 1). Мышьяк и вольфрам (в этой же группе оказываегся и фосфор) могут быть отделены от сурьмы, олова, молибдена и тантала (группа II) в колонке 3 с аниони- [c.95]


Смотреть страницы где упоминается термин Вольфрам от фосфора и мышьяка: [c.153]    [c.98]    [c.67]    [c.98]    [c.306]    [c.378]    [c.764]    [c.765]    [c.6]    [c.66]   
Практическое руководство по неорганическому анализу (1966) -- [ c.768 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.702 ]




ПОИСК





Смотрите так же термины и статьи:

Мышьяк от вольфрама



© 2025 chem21.info Реклама на сайте