Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правило благородного газа

    Строение многоэлектронных атомов. Принцип заполнения. Принцип запрета Паули и спаривание спинов. Правило Гунда. Эффективный заряд ядра. Орбитальная конфигурация и энергия ионизации. Валентные электроны и валентные орбитали. Типические элементы, внутренние переходные металлы, переходные металлы и благородные газы. Сродство к электрону. [c.385]


    Правило эффективного атомного номера (ЭАН) Сиджви-ка указывает на тенденцию центрального атома получить за счет комплексообразования электронную конфигурацию благородного газа. Число собственных электронов центрального атома вместе с числом электронов, полученных им от лигандов, называют эффективным атомным номером. Согласно правилу Сиджвика ЭАН должен быть равен атомному номеру ближайшего благородного газа, что и определяет координационное число комплексообразователя. Так, ион Со + имеет 24 электрона (27—3) и до 36 электронов атома криптона ему не достает 12 электронов, которые он получает, координируя около себя 6 лигандов. Правило Сиджвика имеет много исключений, но всегда соблюдается для некоторых классов комплексных соединений — карбонилов и комплексов с непредельными углеводородами. [c.137]

    Льюисовыми структурами (валентаыми структурами, валентными схемами) называются графические электронные формулы молекул и комплексных ионов, где для обозначения обобществленных между атомами связьшающих электронных пар (связей) используются прямые линии (валентные штрихи), а для обозначения неподеленных пар электронов используются две точки. Для молекул и комплексных ионов, содержащих только элементы первого и второго периодов, наилучшие льюисовы структуры характеризуются тем, что в них каждый атом окружен таким же числом электронов, как атом благородного газа, ближайшего к данному элементу по периодической системе. Это означает, что атом Н должен быть окружен двумя электронами (одна электронная пара, как у Не), а атомы неметаллических элементов второго периода (В, С, К, О, Г) должны быть окружены восемью электронами (четыре электронные пары, как у 1 е). Поскольку восемь электронов образуют замкнутую конфигуращ1Ю 2х 2р , правило записи льюисовых структур требует окружать каждый атом элемента второго периода октетом (восьмеркой) электронов, и поэтому называется правилом октета. [c.501]

    Периодическое изменение свойств элементов представлено в периодической таблице современного вида. При расположении элементов в порядке возрастания атомных номеров и группировке на основании общих свойств они образуют семь горизонтальных рядов, называемых периодами. Каждый вертикальный столбец - группа элементов - содержит элементы с близкими свойствами. Группа лития (Ы), состоит, например, из шести элементов. Все эти элементы - крайне реакционноспособные металлы, образующие хлориды и оксиды общей формулы ЭС1 и Э2О соответственно. Так же, как хлорид натрия, все хлориды и оксиды этих элементов — ионные соединения. В противоположность этому группа гелия, расположенная по правому краю таблицы, состоит из крайне инертных элементов (к настоящему времени известны соединения только ксенона и криптона). Элементы группы гелия известны под названием благородные газы. [c.127]


    Неметаллы, как правило, являются диэлектриками. При смычных условиях они находятся либо в виде двухатомных (галогены, водород, азот, кислород) и одноатомных молекул (благородные газы), либо в виде атомных кристаллов (сера, фосфор, углерод, селен). Промежуточное положение между металлами и неметаллами занимают полуметаллы (бор, кремний, германий, мышьяк, сурьма, теллур). Для них характерны свойства металлов и неметаллов. Как правило, они имеют кристаллические атомные решетки с ковалентной связью. Многие из них являются проводниками. [c.246]

    Допустим, что к этим атомам применимы обычные правила заселения уровней (орбиталей). Какие порядковые номера имеют в такой Вселенной первые два благородных газа  [c.412]

    Поскольку для анионов характерны большие размеры и малый заряд, а их электронная структура, как правило, отвечает структуре благородного газа, они обладают сильной поляризуемостью, а их поляризующее действие на катион обычно невелико, и им часто можно пренебречь, т. е. считать, что поляризация носит односторонний характер. Однако, если катион легко деформируется, то возникающий в нем диполь усиливает его поляризующее действие на анион анион в свою очередь оказывает дополнительное действие на катион и т. д. Это приводит к появлению дополнительного поляризационного эффекта, который тем больше, чем значительнее поляризуются катион и анион. [c.120]

    В соответствии с принятой классификацией к атомам можно отнести не все атомные системы, а только те, электронные конфигурации которых не содержат неспаренных электронов (например, атомы щелочноземельных элементов, благородных газов и др.). Все остальные изолированные атомы представляют собой, как правило, атом- [c.7]

    Экспериментальные исследования и теоретические расчеты показывают, что атомы большинства химических элементов способны присоединять лишний электрон, превращаясь при этом в электростатически отрицательно заряженные ионы. Такие процессы сопровождаются выделением определенной энергии, которая и называется энергией сродства к электрону. Совершенно так же, как и ионизационный потенциал, энергия сродства к электрону неодинакова у различных атомов. Как правило, она возрастает при увеличении ионизационного потенциала и понижается при его уменьшении отметим вместе с тем, что энергия сродства к электрону обычно возрастает с уменьшением числа свободных, незанятых электронами позиций на энергетическом уровне в частности, энергия сродства к электрону у атома фтора выше, нежели у атома бора, поскольку атом фтора на валентном уровне имеет только одну незанятую позицию, а у атома бора на том же уровне — пять. У атомов благородных газов сродство к электрону отсутствует, поскольку в них электронные слои полностью укомплектованы. [c.20]

    Сродство к электрону атомов з-, и /-элементов, как правило, близко к нулю или отрицательно из этого следует, что для большинства из них присоединение электронов энергетически невыгодно. Сродство же к электрону атомов р-элементов — неметаллов всегда положительно и тем больше, чем ближе к благородному газу расположен неметалл в периодической системе это свидетельствует об усилении окислительных свойств по мере приближения к концу периода. [c.84]

    Благородные газы заканчивают собой каждый период системы элементов. Кроме гелия, все они имеют на внешней электронной оболочке атома восемь электронов, образующих очень устойчивую систему. Также устойчива и электронная оболочка гелия, состоящая из двух электронов. Поэтому атомы благородных газов характеризуются высокими значениями энергии ионизации и, как правило, отрицательными значениями энергии сродства к электрону. [c.492]

    Характерной особенностью неметаллов является то, что у их атомов застройка наружных электронных оболочек близка к максимальной. Чем правее расположен неметалл, тем выше энергия ионизации, тем больше сродство к электрону. Поэтому атомы неметаллов проявляют тенденцию к формированию электронной оболочки с конфигурацией благородного газа, что реализуется возрастающей слева направо способностью к присоединению электронов. Внутри групп эти закономерности проявляются снизу вверх, поэтому наиболее электроотрицательным элементом является фтор. [c.253]

    Все химические производные благородных газов, как правило, бесцветные вещества, в обычных условиях разлагающиеся с выделением простых веществ. [c.410]

    Дискретным уровням атома в твердом теле соответствует всегда дискретная система разрешенных зон. разделенных запретными зонами. Как правило, если электроны образуют в атоме или молекуле законченную группу, то при объединении их в твердое или жидкое тело создаются зоны, все уровни которых заполнены, поэтому такие вещества будут обладать при абсолютном нуле свойствами изоляторов [48, стр. П71. Сюда относятся решетки благородных газов, молекулярные и ионные решетки соединений с насыщенными связями. В решетках алмаза, кремния, германия, а-олова, соединений типа А В , А В , С5 каждый атом связан единичными валентными связями с четырьмя ближайшими соседями, так что вокруг него образуется законченная группа электронов 5 р и валентная зона оказывается заполненной. [c.235]


    Когда переходные элементы находятся в степени окисления, отвечающей номеру группы, атомы их приобретают конфигурацию благородного газа и не содержат неспаренных -электронов. Атомы подгрупп кобальта и никеля исключаются из этого правила. [c.323]

    Следовательно, удельная поверхностная энергия в этом приближении пропорциональна теплоте испарения (сублимации) и обратно пропорциональна молярному объему в степени 2/3. Подобную связь величин а Ж обычно называют правилом Стефана. Приведенные в табл. 2 данные свидетельствуют о приближенной выполнимости правила Стефана изменениям теплоты испарения на три порядка величины при переходе от благородных газов и молекулярных кристаллов к ионным и ковалентным соединениям и металлам отвечает примерно такое же возрастание удельной поверхностной энергии. Для твердых тел, для которых определить величину а трудно (см. подробнее 4 данной главы), соотношение (I—15) позволяет оценить возможные значения поверхностной энергии. [c.22]

    Однако это правило точно не выполняется, поскольку числа элементов в периодах повторяются. Действительно, после второго периода, в котором N2= , следует третий период с N3=8, а после четвертого Л/4=18 следует пятый с Л 5=18. в чем причина этих повторений Третий период начинается с Ма, имеющего электронную структуру (15)2(2з)2(2р) (35)>. Затем в атоме магния завершается заполнение Зх-уровня, после чего в следующих элементах заполняются Зр-уровни, и, наконец, такое заполнение завершается в аргоне ( ==18) Аг(15)2(2я)2 (2р)2(35)2(3р) . Однако главному квантовому числу 3 соответствуют также состояния Зс , поэтому аргон не должен был бы быть благородным газом, поскольку на нем не завершается электронная оболочка с п=3. Тем не менее многочисленные опытные данные (химические и спектроскопические) показывают, что энергия З -со-стояния существенно выше энергии Зр-состояния, более того, она выше, чем энергия 45-состояния. Поэтому следующий за аргоном элемент — калий (2=19)—имеет электронные оболочки (15) (25)2(2р) (35)2(3р) (45). По чему же девятнадцатый электрон калия забирается на уровень 4я при пустующих состояниях 3 Это кажущееся противоречие связано с приближенностью описания взаимного отталкивания электронов на основе модели экранирования, которая была использована в предыдущем изложении. В этой приближенной модели отталкивание сводилось к уменьшению эффективного заряда ядра. При таком рассмотрении энергия электрона с п = 4 должна быть выше, чем при п=3. [c.316]

    Металлические свойства наиболее ярко выражены у элементов, занимающих левый нижний угол периодической таблицы, а неметаллические свойства ярче всего выражены у элементов, занимающих правый верхний угол (без учета благородных газов). Ту часть таблицы, которая отделяет металлы от неметаллов, занимают элементы с промежуточными свойствами-, они расположены вблизи прямой линии, проходящей от средней точки в верхней части таблицы к ее нижнему правому углу. Эти элементы, называемые металлоидами, включают бор, кремний, германий, мышьяк, сурьму, теллур и полоний. [c.105]

    Причина быстрого увеличения потенциала ионизации при переходе от элементов группы I к группе О (благородные газы) заключается в том, что при каждом добавлении единицы ядер-ного заряда, связывающего внешние электроны в атоме, этот заряд лишь частично экранируется добавляемым электроном. Концепция эффективного заряда ядра в первые годы развития квантовой химии была общепринята при расчетах приближенных атомных волновых функций, и Слейтер дал правило вычисления величин эффективных зарядов. В табл. 4.3 приведены эффективные заряды ядра для 25- и 2р-электронов атомов [c.55]

    Резюмируя, можно сказать, что правила, согласно которым наиболее устойчивы конфигурации типа благородных газов, введенные на раннем этапе развития теории валентности, успешно прошли проверку временем и согласуются с имеющимися расчетами по методу МО. Большой интерес представляет проведение расчетов по методу МО для молекул, не подчиняющихся этим правилам. [c.131]

    Льюисовы структуры. Обобществление электронных пар и связывающие электронные пары. Неподеленные пары электронов. Электронная конфигурация атомов благородных газов. Правило октета. Двойные связи, тройные связи и порядок связи. Незамкнутые оболочки. Формальные заряды на атс>. ау.. Изоэлгктрснныг молекулы. [c.464]

    Прочность связи ме5кду электроном и ядром. Энергия ионизации. Правило октета. Инертные (благородные) газы. Электроотрицательность [c.48]

    Все галогены весьма активны в реакциях с металлами. Боль-НП1НСТВ0 металлов сгорает в атмосфере фтора на холоде или при нагреванпи. При достаточно высокой темпера1уре золото и платина реагируют с фтором с образованием, как правило, высших фторидов. На Ре, Си, N1, А и 2п фтор при обычной температуре практически не действует, так как на поверхности металлов образуются защитные слои фторидов. Хлор, подобно фтору, непосредственно соединяется почти со всеми металлами (иногда в присутст-вил воды или при нагревании) и с большинством неметаллов, кроме О2, N2, С и благородных газов. Бром и иод также реагируют со многими элементарными веществами, однако менее энергично. [c.339]

    Наиболее важной отличительной чертой ван-дер-ваальсовых сил является универсальность, так как они действуют без исключения между всеми атомами и молекулами. Однако ван-дер-ваальсово притяжение значительно только тогда, когда молекулы находятся на близких расстояниях друг от друга. Так, для аргона на расстоянии приблизительно 400 пм силы притяжения уравновешиваются силами отталкивания, возникающими в результате взаимопроникновения их электронных оболочек. Как правило, ван-дер-ваальсово притяжение между молекулами возрастает с увеличением числа электронов в молекуле, т. е. лриблизительно пропорционально молекулярной массе. Увеличение сил притяжения между более тяжелыми молекулами следует из того факта, что в рядах родственных молекул температуры кипения растут с увеличением молекулярной массы. В частности, для самих благородных газов они составляют —269 (Не), —246 (Ne), — 186 (Аг), —153 (Кг), —108 (Хе) и —62 (Rn). [c.204]

    Проблема размещения благородных газов с учетом специфики электронных конфигураций и заполненности уровней и подуровней решается таким образом, что они помещены в УП1А подгруппе в правой части, Хе—Кп сдвинуты левее пары Аг—Кг, а Не и Ме размещаются в О группе. [c.103]

    Элементы УПА-групны (галогены) в соответствии с правилом 8—N должны иметь координационное число в кристаллах простых веществ, равное единице, т. е. каждый атом может иметь лишь одного ближайшего соседа. Действительно, все галогены (иод при обычных условиях, а остальные при низких температурах) образуют молекулярные кристаллические структуры , в которых расстояния между атомами в гантелеобразных молекулах значительно меньше, чем расстояния между молекулами в кристалле. Так, для хлора длина связи в молекуле 0,202 нм, а расстояние между молекулами в кристалле составляет 0,334 нм. Наконец, правило Юм-Розерп мож но применить и к элементам УП1А-группы (благородные газы) В соответствии с этим правилом при образовании кристаллов про стых веществ координационное число должно быть равно нулю Действительно, кристаллы благородных газов состоят из одноатом ных молекул, связанных силами Ван-дер-Ваальса. [c.30]

    Водород занимает в периодической системе особое место. Двойственная роль водорода обусловлена тем, что, с одной стороны, у него на валентном уровне находится единственный электрон (как у щелочных металлов), а с другой стороны, в силу специфики 1-го периода ему недостает всего одного электрона до устойчивой электронной оболочки благородного газа (как у галогенов). По значению ОЭО (2,1) он занимает среднее положение среди элементов (0Э0р=4,1, ОЭОсз=0,7). Поэтому с менее электроотрицательными элементами он выступает в роли анионообразователя, а с более электроотрицательны.ми является катионообразователем. С учетом общих правил номенклатуры бинарных соединений к гидридам относятся только соединения водорода, в которых он отрицательно поляризован, т. е. в основном его соединения с металлами. Соединения водорода с неметаллами с этой точки зрения не являются гидридами. Их название определяется видом анионообразователя. Так, существуют галогениды водорода (НС1, НВг и т. п.), [c.63]

    С развитием представлений об электронном строении атома стало ясным, что особая химическая инертность гелия, неона, аргона и их аналогов обусловлена повышенной устойчивостью полностью укомплектованных 5- и /3-оболочек. С учетом этого и были разработаны представления о ионной (Коссель, 1916) и ковалентной (Льюис, 1916) связи. Особая устойчивость электронного октета и стремление других атомов тем или иным способом приобрести электронную конфигурацию благородного газа на долгие годы стали краеугольным камнем теорий химической связи и кристаллохимического строения (правило Юм-Розери 8—Л, критерий Музера и Пирсона и др.). Нулевая группа стала своеобразной осью периодической системы, отражающей так называемое полновалентное правило (стабильность октетной конфигурации), подобно тому как УА-группа является осью, отражающей четырехэлектронное правило. [c.397]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    ПЛОТНАЯ УПАКОВКА атомов и молекул, способ модельного описания кристаллич. структур, В кристаллах металлов и отвердевших благородных газов, как правило, реализуются т. н. плотнейшие шаровые упаковки (ПШУ) или плотные шаровые кладки (ПШК). Первые построены из плотнейших слоев (рис. А), к-рые налагаются друг на друга т. о., что каждый шар (атом) касается трех шаров соседнего слоя (рис. Б и В) в итоге каждь1Й шар имеет координац. число 12. Число слоев, приходящихся на период ПШУ, перпендикулярный плоскости слоя, наз. слойностью упаковки. В ПШК шары располагаются менее компактно и имеют более низкие координац. числа (рис. Г и Д). [c.449]

    Доминируюихая концепция ранних теорий валентности, развитых Льюисом и другими, заключается в том, что при образовании химической связи атомы обмениваются электронами или перераспределяют их с образованием электронных конфигураций, обладающих наибольшей стабильностью или инертностью по отношению к дальнейшим химическим превращениям. Поскольку внешние оболочки атомов всех благородных газов содержат по восемь электронов, наиболее важным критерием стабильности стало правило октетов, предложенное независимо Косселем и Льюисом в 1916 г. Впоследствии Льюис ввел свою концепцию двухэлектронной связи и перенес акцент с правила октетов на правило двух электронов. [c.125]

    Для соединений переходных металлов соответствующие благородные газы (Кг, Хе, Rn) имеют во внешней оболочке по восемнадцать электронов (если учитывать -электроны). Поэтому, как будет показано ниже, для их описания оказалось полезным так называемое правило восемнадцати электронов, впервые предложенное Седжвиком. [c.125]

    Чтобы проверить, обладает ли атом структурой благородного газа, необходимо иметь правило, позволяющее отнести электроны в молекуле к определенным атомам. Удобнее всего это сделать, введя концепцию формального состояния окисления. При-лагательное формальный указывает, что это определение не всегда согласуется с тем, что можно было бы считать истинным состоянием окисления атома. [c.127]

    Строеше атома и свойства веществ. Хим. сВ Ва определяются строением внеш. электронных оболочек А., в к-рых электроны связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек А. хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа электронов в заполняющейся оболочке их энергия связи, как правило, увеличивается наиб, энергией связи обладают электроны в замкнутой оболочке. Поэтому А. с одним или неск. электронами в частично заполненной внеш. оболочке отдают их в хим. р-циях. А., к-рым не хватает одного или неск. электронов для образования замкнутой внеш. оболочки, обычно принимают их. А. благородных газов, обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции. [c.216]

    В нормальных условиях (при 0°С и атм. давлении) в газообразном состоянии находятся элементы гелиевой группы (Не, Ne и т. д.), а также ряд элементов, образующих молекулярные газы О , Nj, Hj, F, и lj. Атм. воздух состоит из Nj и о, (соотв. 75,5 и 23,1% по массеХ благородных газов, NjO, СО2 и паров HjO (остальные 1,4%). В природе Г. образуются как продукты жизнедеятельности бактерий, при превращениях орг. в-в, восстаиовлении минер. солей и др. В недрах Земли Г., в основном СН и др. легкие углеводороды, как правило, сопутствуют нефтям встречаются газовые месторождения, содержащие до 70% не леводородных компонентов (HjS, СО, к др.). [c.474]


Смотреть страницы где упоминается термин Правило благородного газа: [c.66]    [c.66]    [c.287]    [c.397]    [c.268]    [c.246]   
Валентность и строение молекул (1979) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Газ благородные

Газы благородные

Прочность связи между электроном и ядром. Энергия ионизации. Правило октета. Инертные (благородные) газы. Электроотрицательность



© 2025 chem21.info Реклама на сайте