Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутан дегидрирования в дивинил

    Дегидрирование бутиленов в дивинил (вторая стадия) 67,7 50 Углеводороды С4 (бутан, бутилены, дивинил и др.)—300 ХПК—800 БПК—700 Азот—43  [c.156]

    Разделение контактного газа дегидрирования бутиленов 1 1,3 1 35 Углеводороды С4 (бутан, бутилены, дивинил)—2800 ХПК—8000 БПК—6000 Взвешенные вещества— 46 pH—8,6 Сточные воды сбрасываются в канализацию после от-парки углеводородов при i - - 80 С [c.156]

    Дегидрирование н-бутана в дивинил протекает последовательно вначале н-бутан превращается в бутилены по реакции СНз-СН2-СН2-СНя СНз-СН = СН-СНз + Н2 -а затем в результате дегидрирования н-бутиленов образуется дивинил по реакции  [c.235]


    Следовательно, выход бутиленов и дивинила при дегидрировании бутана составляет 65—70% (вес.) от теоретически возможного, считая на н-бутан. [c.236]

    В результате недостаточно четкой работы ректификационных узлов целевые продукты (н-бутилены и дивинил)уносятся с побочными продуктами процессов каталитического дегидрирования н-бутаном и бутиленами. [c.238]

    Полная дегидратация гликолей приводит к диеновым углеводородам, Эта реакция представляет интерес для получения некоторых синтетических каучуков (стр. 601). Для синтетических каучуков большое значение имеет дивинил, получаемый из этилового сппрта по С. В. Лебедеву, дегидрированием бутан-бутеновой фракции (стр. 266) или из ацетилена (стр. 748). [c.457]

    Пример XI. Дивинил получают из бутана дегидрированием в адиабатическом реакторе при 7-105 Па. Для поддержания процесса вместе с бутаном в реактор подают водяной пар. Определить расход пара на 1 кг бутана, если на превращение 1 кг его с 20%-ным выходом дивинила требуется в указанных условиях 1100 кДж. Температура реагирующей смеси на входе в реактор 665 °С, а на выходе — 640 °С. [c.116]

    Одностадийное дегидрирование бутана. Из приведенных выше описаний процессов дегидрирования бутана и бутиленов видно, что двухстадийный процесс производства дивинила из бутана отличается значительной сложностью и требует большого расхода водяного пара. Сложным и громоздким является также процесс разделения бутана и бутиленов. Выход дивинила при двухстадийном процессе при применении известных в настоящее время катализаторов составляет (80 х 85) 100 = 68% мол. (80% — выход бутиленов из бутана и 85% — выход дивинила из бутиленов). Практически вследствие неполноты извлечения бутилена и дивинила из их смесей с бутаном и бутиленами соответственно выход дивинила па затраченный бутан в промышленных условиях составляет 50—56%. [c.608]

    В промышленности дегидрированию в дивинил и изопрен подвергают как индивидуальные парафины (бутан и изопентан), так и олефины (бутилены и изопентены). Соответственно и техно- [c.824]

    Н. Д. Зелинского и А. А. Баландина с сотрудниками, а также работы химиков Азербайджана, разработавших способ получения дивинила дегидрированием бутан-бу-тиленовой фракции в сквозном потоке. [c.3]

    Этот способ отделения дивинила от близко кипящих компонентов находит широкое применение при получении дивинила из нефтяных углеводородов и при дегидрировании бутанов й бутилена. [c.148]


    Производство бутиленов и дивинила в период 1966—1970 гг. будет осуществляться каталитическим дегидрированием бутанов. Дополнительным крупным источником сырья для получения бутиленов и дивинила являются продукты комплексной переработки фракций С4 пиролиза и крекинга жидких углеводородов. Пиролиз 1 млн. т низкооктановых бензиновых фракций в трубчатых печах обеспечивает получение наряду с другими углеводородами примерно 30 тыс. г дивинила, 29 тыс. г нормальных бутиленов и 29—42 тыс. т изобутилена. Переработка всех ресурсов фракции С4 пиролиза жидкого сырья позволит резко увеличить объем производства бутиленов и дивинила в нашей стране. [c.210]

    Расчеты показали, что удельные капитальные вложения на 1 г изобутилена, нормальных бутиленов и дивинила, извлекаемых из фракций С4 пиролиза и крекинга жидкого углеводородного сырья, значительно ниже, чем ири их иолучении дегидрированием бутанов. Это обусловлено отсутствием капитальных затрат, необходимых для стадий, предшествующих выделению целевых продуктов, при каталитическом дегидрировании бутанов (табл. 3). [c.212]

    В продуктах дегидрирования бутана, содержащих дивинил, контролируемыми компонентами являются н.бутан, концентрация которого превышает 50% и сумма бутиленов (н.бутилены + изобутилен), содержание которых в смеси составляет 23—34%. Указанные углеводороды должны быть полностью отделены от других компонентов смеси, т. е. углеводородов С1 — Сз и постоянных газов (На, СО2, СО и др.). [c.119]

    Процессы дегидрирования органических соединений, не сопровождающиеся изменением строения молекул сырья а) Дегидрирование алканов и алкенов б) Дегидрирование спиртов Н-бутан Бутилены Этиловый спирт Этиловый спирт Изопропиловый спирт а) Бутилены б) Дивинил Дивинил Дивинил Ацетальдегид Ацетон Составы побочного водорода приведены ниже [c.280]

    Таким образом, эксперименты показали, что практически осуществимо получение -бутиленов из бутан-бутиленовой фракции путем ее селективной полимеризации. При этом при температуре 150—155°, давлении 56—60 ат, объемной скорости 33 объема сырья на 1 объем катализатора и работе на двух реакторах, из которых первый заполнен катализатором низкой активности, а второй — катализатором высокой активности, можно обеспечить полимеризацию 85—90% изобутиленов. Нормальные бутилены при этом будут вовлечены в реакцию лишь на 10—15%, т. е. в основной своей массе они сохранятся и смогут быть использованы в качестве сырья, поступающего непосредственно на вторую ступень дегидрирования для производства дивинила. [c.180]

    Этан, пропан, бутан и пентаны используются в технике для получения соответственно этилена, пропилена, дивинила и изопрена (дегидрирование, в последнем случае с изомеризацией). Смесь пропана и бутана используется в качестве топлива (бытовой сжиженный газ). В последнее время значительные количества бутана используются в технике для получения уксусной кислоты (окисление) (см. гл. 6). [c.69]

    Способы дегидрирования. В промышленности пока применяют три способа получения дивинила из углеводородов С4 1) двух стадийное дегидрирование бутана ( -бутан —> н-бутилен -> диви нил), 2) одностадийное дегидрирование бутана в вакууме и 3) дегидрирование бутилена. [c.10]

    При одностадийном дегидрировании технологический процесс состоит из дегидрирования бутана охлаждения, компрессии, конденсации и выделения бутан-бутилен-дивинильной фракции (ректификацией и абсорбцией) выделения дивинила из этой фракции. Собственно дегидрирование проводится в адиабатических реакторах периодического действия с неподвижным катализатором. Технологический режим подбирается таким образом, чтобы тепло дегидрирования равнялось теплу выгорания углистых отложений при регенерации катализатора, а состав рециркулирующей бутан-бу-тиленовой смеси оставался постоянным. [c.10]

    Для производства мономеров, полимеризуемых затем в полимеры — синтетический каучук, используют, например, каталитическое дегидрирование и-бутиленов или к-бутанов в дивинил дегидрирование изобутана в изобутилен алкилированце бензола этиленом с целью получения этилбензола, а после его дегидрирования — стирола и т. п. [c.35]

    Особый интерес с точки зрения распределения нагрузок представляют системы параллельно работающих реакторов с быстро падающей активностью катализатора. Такие системы применяются, например, в производстве синтетического каучука (процесс дегидрирования изопентана и бутанов, дегидрирования бу-тиленов, изоамиленов, этилбензола, изопропилбензола и т. д.). Активность катализатора в этих процессах быстро изменяется в связи с отложением углистых остатков. Так, в производстве дивинила из бутилена активность катализатора падает за 4— 7 ч, а в производстве дивинила из н-бутана — за 5—10 мин зз. [c.152]


    Весьма ценным пиролизным сырьем являются сжиженные попутные газы нефтедобычи (пропан и бутан). Важнейшими направлениями использования этих газов в СССР явятся бытовое газоснабжение и приготовление автотоплив, в особенности для городского автотранспорта. Большие количества н-бутана будут направляться на заводы синтетического каучука для дегидрирования в дивинил. Подсчитано, что после обеспечения сырьем указанных выше потребителей, оставшихся ресурсов сжиженных газов будет недостаточно для производства необходимых количеств этилена. [c.36]

    Исходным сырьем для производства МЭК служит бутан-бутиленовая фракция термического или каталитического крекинга или продукт однсстадийного дегидрирования н-бутана. Кроме н-бутиленов эти виды сырья содержат инертные примеси — н-бутан и изобутан, а также активные компоненты — изобутилен и, в меньших количествах, дивинил. [c.203]

    Положенное в США в основу производства синтетическою каучука дегидрирование бутанов и бутенов изучалось Гроссом [43] и Моррелем [44]. В качестве катализаторов этими авторами были использованы хром-молибден и окись ванадия, нанесенная на глинозем. Над теми же катализаторами, приготовление которых было описано Гроссом, может быть осуществлено и дальнейшее дегидрирование олефинов в диолефины [45]. Последнюю реакцию, в отличие от дегидрирования парафиновых углеводородов, осуществляют иод вакуумом в 0,25 атм при 600—6.50 и времени контакта от0,3 до0,03сек. Выход бутадиена за проход колеблется в пределах от И до 30%, а максимальный выход 1,3-бутадиена из бутонов достигает 1 % (при отделении сажи, не превышающем 10%). В С(>СР этот путь синтеза дивинила разрабатывался П. Д. Зелинским, О. К. Богдановой, А. П. Щегловой, М.П. Марушкиными Л. Н. Павловым [46, 47].Производство каучука, а затем резины потребовало, в свою очередь, преодоления ряда новых трудностей. Мы приведем лишь два примера, относящихся к полимеризации смесей дивинила п стирола и к производству сажи. [c.474]

    При анализе газов пиролиза или специальных газовых фракций (например, при дегидрировании бутан-бутиленовых смесей) приходится зачастую определять содер<кание и газе дивинила. Наиболее распространсншлй метод анализа па дивинил, предложенный Сукпевичеы и Чилингарян [376], основан на работах Дильса и Адлера о присоединении малеипового ангидрида углеводородам с сопряженными двойными связями  [c.836]

    Бутилен-1 можно отделить от цис- и /п/9анс-бутилена-2. В качестве иллюстрации следует кратко описать разделение бутан-бутиленовой фракции газов нефтепереработки, производимое на одном из заводов США [37] по методу, в котором сочетается ректификация с экстракционной перегонкой. Целевыми продуктами в данном случае являются бутилен-1 и бутилен-2, предназначаемые для дегидрирования в дивинил. В качестве растворителя при экстракционной перегонке применяют фурфурол, который используют также для очистки дивинила, полученного дегидрированием (гл. 12, стр. 213). [c.129]

    В гл. 7 (стр. 129) уже описан процесс разделения бутан-бутиленовой фракции газов одного из нефтеперерабатывающих заводов (г. Порт-Нечис), где бу1илен-1 и бутилен-2 шли на дегидрирование в дивинил, н- и изобутаи использовались на самом нефтеперерабатывающем заводе, а изобутилен полимернзовали для получения авиационного бензина. На рис. 23 приведена схема выделения дивинила из газообразных продуктов процесса дегидрирования н-бутиленов. [c.213]

    На рис. Х.8 изображена схема в одностадийном процессе получения дивинила из бутана с применением реакторов регенеративного типа (73—75]. Свежий н-бутан забирается насосом и после прохождения через испаритель и печь-подогреватель сырья 2 поступает на дегидрирование в реакторы 3 каталитической батареи. До испарения и перегрева к свежему бутану присоединяется рециркулирующая бутан-бутиленовая смесь, возвращаемая с устарювки выделения и очистки дивинила. [c.609]

    Производство дивинила по этому методу получило в последние годы большое развитие [76]. Одностадийный процесс дегидрирования бутана особенно интересен тогда, когда ресурсы к-бутпленов, могущих быть использованными для получения дивинила, недостаточны и в качестве исходного сырья должен применяться н-бутан. [c.611]

    Процесс получения н-бутиленов из н-бутана дегидрированием является первой стадией промышленного получения дивинила из газов нефтепереработки в двухстадийном методе. Основным сырьем служит бутановай фракция, получаемая низкотемпературной перегонкой природного газа или газообразных продуктов переработки нефти. Поскольку дегидрирование бутана в бутадиен в одну стадию требует сложного оборудования, а сам процесс довольно капризный и с трудом поддается управлению, то его проводят обычно в две стадии. Сначала бутан дегидрируют ири 550—600° С в бутилены по реакции [c.249]

    Для дегидрирования н-бутана в н-бутилены применяют катализатор из окиси алюминия, содержащей 8% окиси хрома. Катализатор отравляется парами воды, поэтому процесс ведут без разбавителей при атмосферном давлении и с тщательно высушенным исходным бутаном. Отработанный катализатор, дезактивированный углеродом, получающимся в результате пиролитических реакций, регенерируют в токе воздуха при 550° С, предварительно продувая систему азотом. В промышленности регенерацию проводят через каиодые 1—1,5 ч, если работают в реакторах с неподвижным слоем. Однако в настоящее время такие реакторы не применяют заводы оборудованы непрерывнодействующими реакторами с пылевидным катализатором, и регенерацию ведут также непрерывно в специальных регенераторах. Конверсия бутана в дивинил в этом процессе —50—55%, а выход бутиленов 80—85%. [c.249]

    Некоторую работу в этом направлении проводили и немецкие исследователи. Так, в ряде немецких патентов [22, 23, 24] приводятся катализаторы, используемые при дегидрировании бутанов и бутиленов. антрацит, графит, окись магния, окись цинка. Гроссе и Моррел [25] при пропускании смеси бутиленов над катализаторами из окислов алюминия и хрома получили дивинил с 76% выходом. [c.125]

    За последнее время в печати появилось несколько сообщений, касающихся изыскания новых методов селективного получения диеновых углеводородов, в частности дивинила, окислительным дегидрированием бутиленов при температурах, не превышающих 600° С [17]. В этих работах в качестве сырья были использованы ненасыщенные соединения, содержащие одну двойную связь (бу-тилены), за исключением работы Колобихина с сотр. [8], в которой в качестве исходного углеводорода использовали бутан. [c.192]

    Основными источниками производства непредельных углеводородов С4 в нашей стране являются вторичные процессы переработки нефти и целенаправленного дегидрирования бутанов, выделяемых из нефтяных попутных газов и газов нефтестабилизации. Однако объем получаемых на нефтеперерабатываюших заводах бутилено1вых фракций не -может полностью удовлетворить растущую потребность промышленности основного органического синтеза и производства высококачественного моторного топлива. Недостаточные темпы получения бутанов из газов нефтедобычи сдерживают развитие производства бутиленов и дивинила в процессах каталитического дегидрирования этих углеводородов. [c.206]

    В настоящее время получение бутиленов и дивинила дегидрированием бутанов встречает в значительной мере серьезную конкуренцию со стороны их производства из ф ракций С4 этиленовых установок. При пиролизе, капример, бензиновых фракций в трубчатых печах одновременно с 1 т этилена производится 0,26 т фракции С4, суммарное содержание непредельных углеводородов и дивинила в которой достигает 96 вес.%. При этом в указанных фракциях содержится от 22 до 34 вес.% дивинила [5, 6]. [c.209]

    К этой группе относятся газификация твердых топлив (условно) бурого угля, торфа [93, 326, 327] полукоксование в сочетании с газификацией [47], а также многочисленные другие пропессы, разнообразные по технологии и аннаратурному оформлению. В числе этих процессов [10, 44, 140, 267, 301, 331, 338, 389, 640, 761] окисление SO2 в серный ангидрид на ванадиевом катализаторе нафталина во фталевый ангидрид бензола в малеиновый ангидрид этилена в окись этилена, а также хлористого водорода в хлор и т. д. дегидрирование бутана, бутилена, альдегидов гидрирование нефтяного сырья для иолучения нафталина алкилирова-нне бензола иропан-пропиленовой и бутан-бутиленовой фракциями на алюмосиликатном катализаторе хлорирование метана, этилена, нентанов синтез аммиака, цианистого водорода из метана и аммиака, дивинила из этилового сиирта полимеризация ацетилена в бензол в слое инертного материала конверсия метана, окиси углерода и т. д. прокаливание катализаторов обжиг известняка, цемента, гипса вснучивание перлитов цементация изделий и вулканизация в слое инертной насадки (условно). [c.422]

    При нанесении 10% на А12О3 получают достаточно активный и селективный катализатор дегидрирования низших парафиновых углеводородов конверсия бутана составляет в этом случае 35—40%, селективность по бутилену — 83—85% (575—600° С, 1 бар, 1300—1800 ч ). Катализатор легко регенерируется продуванием воздухом [1]. Дегидрирование бутилена в бутадиен на катализаторе окислы ванадия (26,4%) — окись алюминия приводит к невысоким выходам дивинила (20% на пропущенный бутилен) в отходящих газах содержится значительно больше окиси углерода, чем водорода, что свидетельствует о способности таких катализаторов ускорять крекинг углеводорода [73]. При нанесении окислов ванадия на кизельгур дегидрирование н-бутилена почти не происходит [73].В патентрюй литературе есть указания на дегидрирование бутана и бутилена над УзОб [124] (в присутствии водяного пара, при 450° С и времени контакта 4 сек УзОб должна восстанавливаться в низшие окислы ванадия) выход на пропущенный бутан бутиленов — 9,8%, бутадиена — 1,9%. [c.165]

    Исходя из соображений кинетики и термодинамики и промышленной практики термической деструкции углеводородов, можно полагать, что наиболее благоприятными условиями для образования углеводородов С4 и С5 являются температуры, лежащие между температурой крекинга на бензин и пиролиза на этилен и пропилен, под давлением с применением водяного пара. Наличие цикланов в исходном сырье может положительно сказаться на выходах диеновых углеводородов (дивинила, изопрена) наряду с олефинами. Сырьем для такого процесса наряду с вышеуказанными продуктами могли бы служить и более высоко-кипящне фракции нефти — керосины парафинистых нефтей, парафин, петролатум и др. Такой процесс, несомненно, имеет существенные преимущества перед каталитическими процессами дегидрирования бутанов и изопентана. Здесь имеются практически неограниченные возможности по сырью, по организации мощных некаталитических установок, по получению фракций более богатых непредельными углеводородами, чем аналогичные фракции, получаемые в процессах дегидрирования. [c.56]

    Следует отметить, что в процессе двухстадийного дегидрирования н-бутана, являющемся основным источником н-бутенов. они получаются в качестве промежуточного продукта. Основная часть н-бутенов применяется для дальнейшего дегидрирования в дивинил и в этих процессах нет необходимости в разделении трех изомерных н-бутеное и полного удаления предельных углеводородов. На некоторых установках на вторую стадию дегидрирования направляют бутиленовую фракцию с 80% содержанием н-бутиленов. Остальную часть этой фракции составляют н-бутан, изобутан и небольшое количество изобутилена. Возмож- [c.94]

    Получение бутадиена-1,3 (дивинила) дегидрированием бутан-бути-лоновой фракции способствовало широкому промышленному развитию экстрактивной дестилляции для разделения углеводородов группы С разделению подвергаются системы изобутан—бутен-1, н.бутан—бу-тен-2 бутен-1 — бутадиен-1,3. Выход бутадиена в процессе разделения достигает 98—99%. В качестве третьего агента (растворителя) применяют -фурфурол, ацетон и др. Экстрактивная дестилляния бесспорно найдет [c.183]

    Для снижения расхода водяного пара в этом процессе разрабатывается одностадийный метод производства дивинила из бутана. При этом обе реакции, дегидрирование н. бутана в бутилены и бутиленов I дивинил производят в одном реакторе и на одинаковом катализаторе. ] качестве разбавителя применяется азот, которым разба15ляется б тан н,ли бутан-бути-леновая смесь, поступающая на дегидрирование. [c.637]

    Выход дивинила иа катализаторе К-3 для дегидрирования бутапа в бу-тилспы при 600°, времени контакта 0,25 сек. и разбавлении бутан-бутиленовой смеси (60—40%) азотом в 1 4 (но объему) составил 15,7% на нро-пуп енный и 69,5% на разложенную фракцию, а ири разбавлении азотом [c.637]


Смотреть страницы где упоминается термин Бутан дегидрирования в дивинил: [c.222]    [c.610]    [c.613]    [c.180]    [c.166]    [c.356]    [c.396]    [c.107]    [c.490]   
Общая технология синтетических каучуков (1952) -- [ c.158 ]

Общая технология синтетических каучуков Издание 2 (1954) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Бутан

Бутан Бутан

Бутанал

Дивинил



© 2025 chem21.info Реклама на сайте