Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сернистый ангидрид как растворитель углеводородо

    Заслуживает внимания и процесс очистки дистиллятных продуктов смесью серного и сернистого ангидридов (раствор SO3 в SOj) [1, 23J. Сернистый ангидрид широко известен как высокоэффективный селективный растворитель, применяемый в основном для экстракции ароматических углеводородов. Исследована возможность очистки раствором SO3 в SOj реактивных и других видов топлив от сернистых соединений и, в первую очередь, от меркаптанов. Количество серного ангидрида, необходимого для обработки топлив, зависит от содержания в топливе меркаптанов и составляет 1—5% на топливо. Процесс ведут при температуре минус 10 °С и атмосферном давлении, скорость его определяется скоростью поступления продукта в реакционный сосуд (примерно 10—15 мин). После очистки из топлива удаляют следы SOj, отпаривая при 50—60 °С. Затем топливо обрабатывают водным раствором щелочи, промывают водой и сушат. При очистке в реакционном сосуде образуются два слоя верхний — очищенное топливо и нижний — не растворимый в топливе, но растворимый в воде остаток. [c.85]


    Метод с применением второго растворителя был внедрен еш е-в 1930 г. Л. Эделяну в производство смазочных масел. Этот метод основан на способности сернистого ангидрида растворять углеводороды ароматического ряда, а второго растворителя — снижать вязкость масел. Для увеличения селективности растворителя масла разбавляют смесью толуола и ксилолов, что позволяет понизить температуру экстракции до —10° С и даже до —15° С. [c.153]

    Разработка этого способа прекращена. В настоящее время ароматические углеводороды пз содержащих их фракций извлекаются при помощи селективных растворителей, например жидким сернистым ангидридом, но способу Эделеану и другими, которые ниже рассматриваются детальнее. [c.101]

    Нефтяные дистилляты, из которых даже гидроочисткой не удается получить пригодного для химической переработки материала, дополнительно облагораживают, подвергая перед гидрогенизацией исходную дистиллятную фракцию экстракции избирательными растворителями, например жидким сернистым ангидридом (процесс Эделеану). При этом ароматические компоненты переходят в жидкий сернистый ангидрид, в котором парафиновые углеводороды не растворяются. [c.15]

    Применение сернистого ангидрида, обладающего ограниченной растворяющей способностью по отношению к углеводородам высокого молекулярного веса, обычно ограничивается экстракцией дизельных топлив, керосина, газойлевого сырья для крекинг-установок и других относительно легких нефтяных дистиллятов. Эти процессы экстракции, как правило, проводятся при температуре от —15 до -)-10° и при соотношении растворителя и обрабатываемой фракции от 0,5 до 1,5. [c.197]

    Большое внимание в исследовательских работах уделяется процессам экстракции ароматических углеводородов жидким сернистым ангидридом, сульфоланом, фурфуролом, ди- или триэтилен-гликолями, N-метилпирролидоном, морфолином, диметилформами-дом и другими избирательными растворителями. Эти процессы позволяют снизить содержание ароматических углеводородов в жидких парафинах с 2—5 до 0,1 вес.7о [39—40], а в ряде случаев и до 0,01 вес.%. Иногда после экстракционной очистки предлагается проводить адсорбционную доочистку. [c.211]

    Для извлечения ароматических углеводородов используют в качестве растворителей диэтиленгликоль, жидкий сернистый ангидрид, фенол, фурфурол, сульфолан. [c.14]

    Керосины осветительные требуют хорошей очистки для удаления смол (так как смолы сильно окрашивают нефтепродукт), а также серы, органических кислот, части ароматических углеводородов. В результате очистки улучшаются цвет, запах, внешний вид, светосила керосина, замедляется нагарообразование на фитиле. Для очистки керосинов с большим содержанием ароматических углеводородов выгоднее применять не серную кислоту, а избирательные растворители (например, жидкий сернистый ангидрид). [c.300]


    Используя большую химическую активность ароматической части молекулы, Лазар Эделяну [8] еще в 1910 г. разработал метод выделе- ния ароматических углеводородов из керосиновых фракций путем экстракции этих углеводородов жидким сернистым ангидридом. Высокая избирательность растворителя но отношению к ароматическим углеводородам и легкость отделения его от экстракта испарением обусловили широкое внедрение метода в нефтезаводскую практику. Сейчас, когда ароматические углеводороды нефти, в том числе и высокомолекулярные, начинают широко использоваться как химическое сырье, метод Эделяну может сыграть положительную роль. Успешно можно использовать его в исследовательских работах. [c.116]

    В промышленной практике для повышения растворяющей способности широко используют органические неполярные растворители—бензол и толуол. При их добавлении к сернистому ангидриду, фурфуролу, фенолу, кетонам резко повышается растворяющая способность последних и понижается КТР, но наряду с этим снижается избирательность. О повышении растворяющей способности ацетона и метилэтилкетона (МЭК) при добавлении к ним толуола можно судить по данным о КТР нафтеновых и ароматических углеводородов, выделенных из различных масел (соотношение растворитель углеводород=3 1)  [c.77]

    В 1925—1929 гг. были сделаны первые попытки извлечения сернистых соединений из нефтяных фракций путем экстракции растворителями. Из керосиновой фракции иранской нефти сернистые соединения извлекали жидким сернистым ангидридом при температуре ниже нуля. Из экстракта (смесь сернистых соединений с ароматическими углеводородами) сернистые соединения выделяли через комплексы с ацетатом ртути [25]. [c.106]

    Ароматические углеводороды резко отличаются от других углеводородов довольно сильно выраженной се [ективностью растворения в некоторых веществах. К числу таких растворителей относятся метиловый спирт, насыщенный на холоду сернистым ангидридом, сам сернистый ангидрид, диметилсульфат, хлорекс, ацетон, анилин и многие другие вещества, чем пользуются в технике для выделения ароматических углеводородов, а также при анализе углеводородных смесей. [c.105]

    Установка для извлечения ароматических углеводородов жидким сернистым ангидридом. Жидкий сернистый ангидрид как растворитель в экстракции давно применяется в нефтяной промышленности и был предложен Эде-леану. [c.221]

    В настоящее время для извлечения ароматических углеводородов в этом процессе используется в качестве второго отмывочного растворителя деароматизированная керосиновая фракция. В таком виде процесс получил название модифицированной экстракции с жидким сернистым ангидридом. [c.221]

    Сульфохлорирование газообразных парафиновых углеводородов лучше всего проводить путем пропускания смеси угле водорода, сернистого ангидрида и хлора через инертный растворитель,, например четыреххлористый углерод. Имеются патентные данные о том, что сульфохлорирование газообразных углеводородов может быть осуществлено в газовой фазе в пределах температур от —10 до -(-150° С. С другой стороны, в литературе имеются указания, что в газовой фазе реакция протекает очень медленно и образуются преимущественно алкилхлориды, а также хлористый сульфурил [c.217]

    Необходимо все время следить, чтобы во вводимой в реактор смеси углеводорода, сернистого ангидрида и хлора был избыток ЗОг, так как при облучении реакция одного только хлора с газообразными углеводородами может сопровождаться взрывом.-Это относится и к проведению реакции в инертном растворителе . [c.217]

    Одни и те же растворители, из которых состоит дисперсионная среда нефтей и нефтепродуктов, могут по-разному влиять на поведение ассоциатов (парафинов, асфальтенов и др.) в нефтяной системе. Парафин, в отличие от асфальтенов, хорошо растворяется в парафиновых углеводородах, которые являются неполярными растворителями. Твердые парафины лучше растворяются в высокомолекулярной части неполярных растворителей, чем в некоторых легких углеводородах, особенно при низких температурах. Относительно легко парафин растворяется в полярных растворителях, не содержащихся в нефтях (в эфире, метилэтилкетоне, дихлорэтане, сернистом ангидриде и др.). [c.32]

    Экстракция растворителями. Во многих случаях для разделения на компоненты нефтяных фракций применяется метод селективного, или избирательного, растворения. Метод основан на том, что какая-либо группа соединений избирательно растворяется в данном растворителе, тогда как соединения других классов в нем не растворяются. В качестве избирательных растворителей для нефтяных фракций и углеводородов используют жидкий пропан, сернистый ангидрид, уксусную кислоту, анилин, ацетон и др. Например, ароматические углеводороды селективно растворяются в жидком сернистом ангидриде, нитробензоле, фурфуроле, левулиновой кислоте. Смолистые вещества и полициклические углеводороды хорошо растворимы при обычных температурах в нитробензоле, феноле, крезоле, фурфуроле. [c.115]


    Простота в обращении и безопасность. В качестве примера можно привести жидкий сернистый ангидрид, который в лабораторных условиях не находит применения, хотя, как экстрагент, обладает рядом замечательных свойств и используется при экстракции в промышленных масштабах. Всегда следует помнить, что такие растворители, как эфир, сероуглерод и углеводороды, очень легко воспламеняются. [c.391]

    В различных разделах настоящей книги рассмотрены некоторые методы адсорбционной защиты окружающей среды защита воздушного бассейна от сернистого ангидрида (с. 271—282), рекуперация летучих растворителей и углеводородов из отходящих промышленных газов (с. 268—271), защита атмосферы в районах заводов вискозного волокна (с. 282—288), очистка сточных вод (с. 290— 294). Фактический материал, приведенный в других разделах, может послужить основой для создания процессов очистки вредных отходов многочисленных производств различных отраслей промышленности. [c.474]

    Два растворителя совместно применяются по меньшей мерс в двух промышленных процессах очистки смазочных масел. Это — очистка сернистым ангидридом и бензолом, в которой бензол служит для повышения растворяющей способности сернистого ангидрида в отношении высокомолекулярных углеводородов, и дуосол-процесс, в котором применяются пропан и селекто (смесь фенола и крезолов). Последний процесс, который особенно пригоден для обработки остаточных продуктов, состоит из деас-фальтизации растворителем и очистки другим растворителем, объединенных в одну операцию. [c.192]

    Неудобства работы с жидким сернистым газом, кииящим уже ири —8" и развивающим прп этом удушливые пары, побудили искать другие подходящие растворетели. Тауш (116) предложил уксусный ангидрид прп —15°, Шварц (117) смесь пз равных объемов чистого анилина и 94—96% спирта. Но эти растворители значительно уступают сернистому ангидриду, не имея в то же время преимуществ в смысле легкости удаления растворителя из экстракта. Уксусный ангидрид легко притягивает влагу из воздуха, причем очень резко изменяется его растворяющая способность по отношению к ароматическим углеводородам — причина, по которой неудобно применение оп])еделенной концентрации уксусной кисло гы и для осаждения парафина. [c.150]

    При производстве нефтяных масел ряд основных технологических процессов основан на различной растворимости компонентов сырья в избирательных растворителях. Для разделения углеводородных смесей избирательные растворители были впервые использованы А. М. Бутлеровым в 1870 г., а промышленное применение такие растворители нашли после того, как в 1911 г. Эделеа-ну предложил использовать для очистки керосиновых фракций сернистый ангидрид. Большой вклад в йзучение теории избирательного растворения углеводородов в ряде растворителей и разработку промышленных процессов внесли советские и зарубежные ученые Н. И. Черножуков, И. Л. Гуревич, А. Г. Касаткин, Н. И. Гальперин, Л. Г. Жердева, А. А. Карасева, А. 3. Биккулов, Д. О. Гольдберг, В. А. Каличевский, Фрэнсис, Пул, Феррис и др. [c.42]

    Для смягчения условий сульфирования газообразным серным ангидридом предложено применять растворители — галогенпроиз-водные низкомолекулярных углеводородов (дихлорэтан, три- и тетрахлорэтилен, четыреххлористый углерод и др.). Чаще всего испо.льзуют дихлорэтан и четыреххлористый углерод, однако они токсичны, требуют регенерации, способствуют коррозии аппаратуры, вызывают необходимость дополнительного охлаждения реакционного устройства. Более перспективным растворителем является жидкий сернистый ангидрид — он дешев и доступен, легко и без потерь регенерируется, ослабляет окислительное действие серного ангидрида, за счет испарения в сульфураторе снимается часть выделяющейся при сульфировании теплоты. [c.71]

    При повышении концентрации бициклических ароматических углеводородов газойле каталитического крекинга экстракцией в качестве экстрагирующего агента используют фурфурол, сернистый ангидрид, пиридин и др. При помощи пиридина из газойля каталитического крекинга была выделена высокоароматизированная фракция 200—300° С (см. табл. 66) [16], выход которой составляет 29 вес. % на исходный газойль. Использование фурфурола и бензина Галоша (в качестве второго растворителя) позволяет улучшить показатели экстракции — из фракции 200—350° С газойля каталитического крекинга с содержанием 27 вес. % алкилнафталинов был получен концентрат бициклических ароматических углеводородов, выход которых составил 41 вес. %. Моноциклических ароматических углеводородов в концентрате содержалось 1,3 вес.%, а парафиновых и нафтеновых углеводородов — около 1 вес.% [17, 18]. [c.297]

    Концентрацию в газойле каталитического крекинга бициклических ароматических углеводородов повышают с помощью экстракции. Экстрагирующим агентом служит фурфурол, сернистый ангидрид, пиридин и др. [99, 100]. При помощи пиридина из газойля каталитического крекинга выделили высокоароматизированную фракцию 200—300 С (см. табл. 6.10) [6, 99], выход которой был 29 вес. % на исходный газойль. Использование фурфурола и в качестве второго растворителя бензина Галоша позволяет улучшить показатели экстракции — из фракции 200—350 °С газойля катали- [c.270]

    Применяемые растворители должны обладать высокой избирательностью по отношению к ароматическим уг.певодородам. Физические характеристики растворителей должны обеспечивать легкое разделение двух фаз в практически приемлемом диапазоне температур, например между —30 и - -120°. Из растворителей, предложенных для выделения низших ароматических углеводородов, применяют те же самые, которые используют для очистки керосина и смазочных масел, т. е. жидкий сернистый ангидрид, нитробензол, фенол, фурфурол и т. п. В самое последнее время в промышленности стали экстрагировать ароматические углеводороды водным диэтиленгликолем. [c.246]

    Очистка жидким сернистым ангидридом. Нефтепродукт обра- батывается жидким сернистым ангидридом противоточно. Растворитель извлекает и переводит в раствор экстракта вредные и нежелательные составные части нефтепродукта — смолистые вещества, сернистые соединения, часть ароматических углеводородов и др. Очищенный нефтепродукт рафинат) освобождается перегонкой от частично увлеченного растворителя. Таким же образом основное количество растворителя освобождается от экстракта и вновь вступает в процесс. [c.314]

    Линии I — исходное сырье и — сернистый ангидрид III — отмывочный растворитель IV — рафинатный раствор V — экстрактный раствор VI — пары сернистого ангидрида VII — рафинат VIII — экстракт IX — бензол X — толуол X/ — g -f- высшие ароматические углеводороды [c.222]

    Выделение сульфохлоридов. Сульфохлориды могут быть от делены от непрореагировавших углеводородов с помощью селективных растворителей. Жидкий сернистый ангидрид раство ряет сульфохлориды, но почти не растворяет углеводоро дов 38-4о Выделение может быть более совершенным, есл промыть раствор сульфохлорида (в жидком сернистом ангидриде низкокипящим растворителем, например, гексаном, для удале ния непрореагировавшего углеводорода. [c.228]

    До разработки процессов каталитического риформинга ксилолы получали в промышленном масштабе только из каменноугольного дегтя. Высокоарома-тизированные риформинг-бензины оказались превосходным источником легких ароматических углеводородов, выделяемых в процессах экстракции такими растворителями, как сернистый ангидрид или диэтиленгликоль. Уже в 1954 г. производство смешанных ксилолов из каменноугольного дегтя составило около 30 тыс. т, в то время как производство их из нефтяного сырья достигло 330 тыс. т. Поэтому, когда появились крупные потребители нараксилола, удовлетворение этой потребности пошло по линии нефтяного ксилола, а не каменноугольного. [c.81]

    Безводный фтористый водород также может использоваться в качестве обессеривающего растворителя, хотя до сего времени этот процесс в промышленном масштабе не осуществлен. Растворяющая способность фтористого водорода, по-видимому, обусловлена предварительным образованием солей сульфонияили ионизированных комплексов с фтористым водородом, которые избирательно растворяются в кислоте [78]. Эффективность экстракции фтористым водородом сернистых соединений данного типа снижается с повышением их молекулярного веса кроме того, она зависит и от типа сернистых соединений. Низкомолекулярные ароматические углеводороды не экстрагируются, но при очистке сырья, направляемого на каталитический крекинг, наряду с сернистыми соединениями извлекаются и полициклические ароматические углеводороды. Присутствие сернистых соединений способствует экстракции тяжелых ароматических компонентов. В одном случае при очистке сырья для каталитического крекинга фтористым водородом удалялось большее количество серы, чем при очистке 97%-ной серной кислотой, нитрометаном, фурфуролом, диме-тилсульфоланом или сернистым ангидридом. [c.248]

    Процесс юдекс, разработанный фирмой Доу и доведенный до промышленного внедрения фирмой Юниверсал ойл продактс , представляет противоточ-ный процесс экстракции с применением водного диэтиленгликоля в качестве растворителя. При экстракции насыщенных легких ароматических концентратов он обеспечивает высокую полноту извлечения ароматических углеводородов, чрезвычайно высокую чистоту экстракта и высокую рентабельность [18]. Избирательность применяемого растворителя приблизительно пропорциональна отношению углерод водород в компонентах сырья и обратно пропорциональна их температурам кипения. В противоположность экстрактивной или азеотропной перегонке в таких процессах экстракции, в которых применяется водный гликоль или жидкий сернистый ангидрид для получения продуктов высокой чистоты, не всегда требуется предварительное четкое фракционирование сырья. [c.248]

    Поскольку значительная часть реализуемого в настоящее время бензола используется в химической промышленности и лишь ограниченное количество применяется в качестве растворителя, к чистоте бензола предъявляются высокие требования бензол для химической переработки должен выкипать в пределах 1° С. До разработки экстракционных процессов производство бензола такой высокой чистоты было почти невозможно. Некоторое количество его выделяли из риформинг-бензинов перегонкой при этом получали сырую бензольную фракцию, все еще содержащую сравнительно большое количество алканов. Эту фракцию подвергали азеотронной перегонке с метанолом. Однако этот метод, как и другие, испытывавшиеся до разработки экстракционного процесса юдекс, не обеспечивали получения бензола сорта ннтрацпонный (выкипающего в 1-градусном интервале). Экстракция жидким сернистым ангидридом, применявшаяся во время второй мировой войны для производства толуола, не позволяет получать 1-градусный бензол, так как в экстракте остается слишком большое ко.личество не-ароматическнх углеводородов, но температуре кипения весьма близких к бензолу. [c.248]

    Диметилсульфоксид (СНзЗОСНз), т. кип. 189°/760 мм (с разложением) или 85—87°/25 мм, имеет ряд преимуществ в качестве растворителя и в настоящее время находит широкое применение. По своей растворяющей способности он близок к диметилформамиду хорошо растворяет ацетилен, окись этилена, двуокись азота, сернистый ангидрид, многие ароматические вещества, гетероциклические соединения, камфору, смолы, сахара, жиры и т. д. Это бесцветная жидкость без запаха не смешивающаяся с насыщенными алифатическими углеводородами и смешивающаяся в любых отношениях с водой, метанолом, этанолом, этиленгликолем, глицерином, ацетоном, этилацетатом, диоксаном, пиридином и ароматическими углеводородами. Диметилсульфоксид растворяет и неорганические соли. Так, например, при 60° он растворяет 10,6% азотнокислого калия, 21,8% хлористого кальция и приблизительно 0,6% сульфата натрия и хлористого калия. [c.599]

    Назначение — удаление смолистых веществ и полициклических ароматических углеводородов с целью иовыщения индекса вязкости, снижения коксуемости, улучшения цвета и вязкостно-температурных свойств смазочных масел. В качестве селективных растворителей чаще всего применяют фурфурол и фенол. Ранее исиользовались также нитробензол и сернистый ангидрид. Фурфурол более эффективен при очистке дистиллятных фракций со значительным содержанием ароматических углеводородов фенол целесообразно применять для очистки остаточных компонентов и сырья из сернистых нефтей. [c.119]


Смотреть страницы где упоминается термин Сернистый ангидрид как растворитель углеводородо: [c.9]    [c.487]    [c.149]    [c.85]    [c.232]    [c.17]    [c.25]    [c.77]    [c.219]    [c.126]    [c.249]   
Технология переработки нефти и газа Часть 3 (1967) -- [ c.104 , c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Сернистый ангидрид

Сернистый газ как растворитель

Сернистый газ сернистый ангидрид



© 2024 chem21.info Реклама на сайте