Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвод

    Адиабатический процесс, протекающий без отвода или подвода тепла. В адиабатических системах температура в реакторе непрерывно меняется от входа к выходу, возрастая для экзотермических процессов и убывая для эндотермических. [c.263]

    Нужно ли подводить или отводить тепло от газа при изотермическом сжатии  [c.42]

    Десорбер, как п абсорбер, обычно представляет собой тарельчатую колонну. Теплота десорбции может подводиться с помощью кипятильника либо горячей струи . [c.248]


    Фракция С4 после прохождения бутан-бутеновой смеси через печь содержит 8—12% бутадиена. В этом процессе представляет интерес решение вопроса о подводе тепла, необходимого для эндотермической реакции дегидрирования. Подвод тепла при помощи перегретого водяного пара здесь невозможен, так как устойчивый против действия водяного пара катализатор № 1707 не пригоден для прямого дегидрирования к-бутана в бутадиен и может применяться только в двухступенчатом процессе. [c.87]

    I — барабан 2 — трубка для подвода суспен-8ии л — отражатель 4 — крестовина 5 — головка барабана в — гибкий вал 7 — станина в — патрубок д.ш отвода тяжелой жадности 9 — патрубок для отвода легкой жидкости 10 — привод. [c.43]

    Обычно количеством орошения задаются, а тепло, подлежащее подводу через кипятильник, определяют из уравнения теплового баланса. [c.217]

    Для процесса ректификации безразлично, каким путем подводится тепло в низ колонны. [c.221]

    Скорость процесса адсорбции определяется пе скоростью собственно адсорбции, которая протекает очень быстро, а скоростью подвода молекул из объема к поверхности зерен адсорбента и скоростью транспорта молекул с поверхности зерна к центру его по многочисленным порам. Эти процессы определяются скоростью диффузии молекул. [c.260]

    Из таких углеводородов, как метап, этан и пропан, содержащихся в отходяш их газах гидрирования угля или в природном газе пиролизом при очень высоких температурах можно получить ацетилен. Проблема подвода большого количества тепла, необходимого для эндотермического процесса пиролиза, может решаться различными способами. Превращение метапа согласно уравнению [c.94]

    Изотермический процесс, когда скорость отвода или подвода тепла пропорциональна его выделению или поглощению в процессе реакции. Реакции, протекающие изотермически, характеризуются постоянством температуры по всему реакционному объему. [c.263]

    Для интенсификации работы реакторного устройства и снижения выхода побочных продуктов устанавливаем четырехсекционный реактор со ступенчатым подводом наиболее реакциоиноспособного реагента — татрам ра пропилена. При этом концентрационный к. п. д. реактора возрастет до 0,70 (см. рис, 139, ti). Дальнейшее увеличение числа секций недостаточно эффективно, поэтому ограничиваемся четырьмя секциями. [c.299]

    Подводя итог, МОЖНО сказать, что смесь солей сульфокислот с числом углеродных атомов 12—18 охватывает собой все продукты, которые необходимы для получения веществ, обладающих хорошими смачивающими, пенообразующими и моющими (хлопчатобумажные ткани) свойствами. Исходя из когазина II, если принимать дополнительные меры (которые рассмотрены ниже), можно синтезировать достаточно удовлетворительный синтетический продукт, который может получить широкое применение в качестве моющего средства и вспомогательного. материала для текстильной промышленности. [c.411]


    Подвод больших количеств тепла, необходимых для осуществления эндотермической реакции пиролиза метана в ацетилен, возможен также путем сжигания части газа в чистом кислороде. При этом выделяется тепло в количестве, достаточном для расщепления оставшейся части углеводородов в ацетилен. [c.95]

    Способ работы представлен на схеме рис. 48. Тепло подводится к реакционным печам от подогревателя, в котором пары углеводородов и водород подогреваются до вступления в реакционную камеру. Исходный продукт проходит последовательно три печи (камеры), в которых протекает желаемая [c.106]

    Для этой цели используют современные процессы швелевания с циркуляцией газа, при которых продукты швелевания быстро выводят из печи. В качестве газа-носителя, который одновременно является и источником тепла, служат главным образом не содержащие кислорода газообразные продукты сгорания с температурой около 650°. Важными преимуществами подобных процессов швелевания являются равномерный подвод тепла к исходной шихте и сравнительно мягкие условия выделения смолы. Одновременно образуется легкогорючий кокс (пламенный кокс). Значительные трудности представляет полное отделение смолы швелевания из больших количеств циркулирующего газа. В настоящее время известны процессы, разработанные фирмами Лурги и Пинч [47]. [c.49]

    Подобное протекание реакции удалось объяснить лишь на основании так называемой теории цепных реакций (Боденштейн), которые протекают в реакционной смеси без подвода световой энергии. [c.139]

    А [Па]. Можно показать, что свет с такой длиной волны подводит около 90 ккал/г-мол энергии [c.142]

    Для хлорирования газообразных углеводородов целесообразно подводить углеводород и хлор раздельно в инертный по отношению к хлору растворитель при энергичном перемешивании и освещении ультрафиолетовыми лучами. [c.142]

    При применении 3 объемных частей водяного пара, перегретого до достаточно высокой температуры, на 1 объемную часть хлора реакция протекает гладко без дополнительного подвода тепла. [c.155]

    Аналогично измеряют расход двуокиси серы, которая затем также переводится в газообразное состояние. После измерения скоростей потока хлора и двуокиси серы они смешиваются и совместно подводятся к колонне для сульфохлорирования, где проходят через трубку из поливинилхлорида с большим числом очень мелких отверстий (барботер) и в виде мельчайших пузырьков поступают внутрь колонны. [c.401]

    По описанной выше схеме наряду с хлорированием углеводородов до монохлоридов можно также проводить дальнейшее хлорирование монохлоридов для получения дихлорпроизводных. В этом случае вместо углеводорода на хлорирование направляют монохлорид, который из емкости 35 то линиям / и II подводится в реакционный аппарат. [c.163]

    Углеводород поступает в кольцевое пространство 3 и через четыре тангенциальные прорези подводится в смесительную камеру 2, в которую через две форсунки с боковыми отверстиями подается также хлор. При этом возникает завихренный газовый поток, поступающий в собственно реакционное пространство и поддерживающий зерна катализатора во взвещенном состоянии. [c.171]

    Таким способом удаляется вся образующаяся при реакции вода, В реактор непрерывно подводят свежий бутиловый спирт и хлористый водород следовательно, при применении сравнительно небольшого количества катализатора можно этерифицировать большие количества спирта. [c.194]

    Если же процесс сульфохлорирования вести при ультрафиолетовом облучении, то хлорирование в углеродной цепи почти устраняется. Из этих двух конкурирующих друг с другом реакций — сульфохлорирования и хлорирования в углеродной цепи — первая в результате подвода энергии в виде ультрафиолетового света проходит значительно быстрее, чем вторая. [c.362]

    Обычно ректификационная колонпа снабжается большим числом тарелок, на каждой из которых происходит процесс массообмена, сопровождающийся однократным испарением и конденсацией. Для создания нисходящего потока жидкости пары с верха колонны пропускают через конденсатор образующийся конденсат вводится в колонну в качестве орошения. Для создания потока поднимающихся паров в нижнюю часть колонны подводится тепло. В непрерывно действующей колонне сырье загружают в среднюю часть колонны, называемой испарительной (эвапорационной) частью. [c.210]

    Если температурный уровень перегонки таков, что остаток не удается нагреть до нужной температуры теплоносителем, либо сли поверхность кипятильника и количество теплоносителя получаются чрезмерно большими, тепло в низ 1 олонны подводится при яомощп так называемой горячей струи . Часть остатка с низа колонны забирается насосом и прокачивается через змеевик трубчатой печи, где нагревается до более высокой температуры и частично мо кет испаряться, а затем возвращается под пигкнюю тарелку 1 олонны. [c.221]


    Часто по ряду причин не представляется возможным подводить тепло в отгонную часть колонны, например при перегонке высоко-кипящих жидкостей, склонных к разложению. Тогда в ииз колонны вводят водяной пар, снижающий парциальное давление углеводородных паров и способствующий испарению, а скрытая теплота испарения отнимается от самой жидкости, вследствие чего в отгонной части колонны устанавливается отрицателыг].1Й температурный градиент, т. е. температура уменьшается сверху вниз. В этом случае ректификация в отгонной части колонны протекает с градиентом парциального давления, которое возрастает снизу вверх, поскольку поток паров, поднимающихся по отгонной части колонны, обогащается углеводородными парами. [c.221]

    Тепло, внесенное в абсорбер насыщенным абсорбентом п водяны1 г каром и подводимое через кипятильник, отводится отпаренным абсорбентом и газом. Из теплового баланса десорбера находим количество тепла, подлежащее подводу через кипятильник  [c.248]

    С точки зрения условий ведення процессов различают процессы трех типов, отличающиеся методами отвода или подвода тепла. [c.263]

    Политропический процесс, протекающий с отводом или подводом тепла, когда скорость отвода или подвода тепла не пропорциональна количеству выделенного или поглощенного тенла. В рассматриваемом случае температура в реакторе также меняется от входа к выходу, но характер температурной кривой зависит в большей степени от работы поверхности теплообмена, чем от вида кинетической кривой. К полптропическим системам могут быть отнесены реакционные секции змеевиков печей термического крекинга и пиролиза, реакторы каталитического крекинга с неподвижным катализатором в процессе регенерации, змеевиковые реакторы полиэтилена ысокого давления и др. [c.263]

    Возможны также различные разновидности этих двух способов секционирования. Так, последовательное секционирование может успешно сочетаться со ступенчатым подводом наиболее реакционпо-способпого реагента (рис. 138, в). Особенно эффективным является сочетанпо секционирования с противотоком реагентов — ступенчатый противоток (см. рис. 138, г и 134, б), применимый для различных процессов в кипящем слое. [c.275]

    На принципе частичного испарения сырья (изобутана) также осповап отвод тепла реакции в показанном на рис. 145 реакторе для алкилирования изобутана бутиленом. Этот реактор представляет собой последовательно секциони-рованн])1Й аппарат со ступенчат1.1м подводом сырья. Циркулирующий изобутан и серная кислота подаются в первую секцию и проходят последовательно вторую н третью секции, а исходное сырье разбивается па три потока, каждый из которых подается в одну из секций. В каждой секции установлен пропеллерный смеситель. Темиература регулируется испарением части изобутапа. [c.280]

    Рассматривая методы дегидрирования бутана, автор указывает, что основной трудностью процесса является необходимость быстрого подвода большого количества тепла в зону реакции. Однако он не упол1инает о широко распространенном методе дегидрирования в кипящем слое катализатора, ири котором эта проблема решается наиболее удачно. [c.6]

    В промышленных условиях для полного превращения 1 кг бутана требуется примерно 550 ккал. Подведение такого большого количества тепла представляет технически трудную проблему. Для решения ее имеется в принципе три возможности. Во-первых, расположение катализатора в трубках, обогреваемых снаружи газом (иОР-процесс) [15]. Во-вторых, тепло, необходимое для дегидрирования, предварительно накапливается в реакторе таким образом, что совместно с катализатором в зону дегидрирования вводится некатализирующий материал, обладающий высокой теплоемкостью. Так как катализатор для освобождения от коксовых частиц, делающих его неактивным, время от времени подвергается регенерации путем выжигания в струе воздуха, и при этом освобождается большое количество тепла, то в дальнейшем тепло, приносимое катализатором в реактор, используется для осуществления реакции дегидрирования. Но количество тепла, накопленное при этом в катализаторе, вернее в теплоносителе, ограничено, поэтому необходимо, чтобы процесс регенерации проходил за возможно короткое время (7—15 мин.). В случае необходимости можно также в период регенерации подводить к катализатору еще искусственное тепло (процесс Гудри [16]). [c.47]

    Этот катализатор пригоден также для дегидрирования к-бутана в к-бутен. Тепло для дегидрирования подводится извне путем нагрева заполпснных катализатором трубок. В процессе Стандард Ойл дегидрирование бутенового концентрата происходит над специальным катализатором [5], устойчивым против действия водяного пара (рис. 41). При этом уже не требуется наружный обогрев. Теплоносителем является применяемый в большом избытке водяной пар преимуществом является то, что очень сильно понижается парциальное давление бутена, а это благоприятствует протеканию дегидрирования как равновесной реакции [c.85]

    Способы работы также часто различны. Как и в каталитическом крекинге, здесь различают три вида установок установки с неподвижным катализатором, в которых контакт находится в виде таблеток, установки с подвижным катализатором, в которых контакт, в большинстве случаев имеюш,ий форму шариков, непрерывно циркулирует через установку и реактивируется (регенерируется) в особой печи и, наконец, установки, работающие по принципу псевдоожиженного слоя, в которых катализатор находится в пылевидном состоянии и поддерживается парами бензина в постоянном завихренном движении. Так как процесс эндотермический, то часть необходимого тепла подводится за счет предварительного подогрева бензиновых паров циркулирующим водородом, а другая часть катализатором, который в процессе регенерации (выжигание кокса в струе воздуха) поглощает много тепла. [c.105]

    Фотохимическое хлорирование является типичным радикально-цепным процессом [1]. Подвод энергии в форме ультрафиолетового света вызывает расш епление молекулы хлора на атомы  [c.112]

    Второй способ подвода тепла для обеспечения протекания эндотермической реакции дегидрирования основан па введении в реакционную смесь большого количества перегретого до высокой температуры водяного пара [86]. По способу, применяемому фирмой Доу Кемикал Компани, работают с весовым отношением водяного пара к этилбензолу 2,6 1. Водяной пар предварительно перегревается до 710°, температура поступающих в процесс паров этилбензола 520°. Над катализатором оба пара смешиваются, температура смеси ( остаиллет около 625°. Гаг ы остаются п почп ровно 0,5 сек. и за это время (за один проход через печь) достигается превращение. 57% этилбензола. Применение метода стало возможно после разработки катализатора, устойчивого против действия перегретого водяного пара. Такие катализаторы были разработаны фирмой Стандард Ойл Депелонмент и. Шелл Девелопмент Комнапи под названием катализаторов 1707 и 105 [87]. [c.237]

    Прпмепенпе большого избытка водяного па1)а полностью предотвра]цает отложение кокса иа ь атализаторе, так что дегидрирование может проводиться без периодической регенерации катализатора. Так как необходимое для дегидрирования тенло подводится с перегретым водяпылт паром, то отпадает необходимость в устройстве какого-либо обогрева реакционной печи, поэтому конструкция ее, естественно, сильно упрощается. Способ работы показан на схеме рис. 145. [c.237]

    В качестве реактора хлори-ровация применена вериикальная труба из прозрачного материала, например стекла, с шарообразными расширениями, которая интенсивно облучается я может охлаждаться снаружи путем орошения водой. Хлор подводится в низ трубы, а хлористый метиле поступает сверху. [c.147]

    Этан в количестве 100 мл/мин пропускают через охлажденный до 0° тетраэтилсвинец и подводят в реакционную стеклянную трубку, где он взаимодепствует с 50 мл/мин хлора, разбавленного 150 мл азота. Уже при температуре 132° хлор реагирует более чем на 95%. В отсутствие тетраэтилсвинца при прочих одинаковых условиях реакция ие протекает при термическом процессе одинаковая скорость хлорирования достигается лишь при температуре 250—290°. [c.152]

    Реакционная трубка 6 может состоять из нескольких плоских витков, каждый из которых должен иметь отдельный подвод хлора 5 (рис. 32,6). При этом необходимо стремиться, чтобы на участке от одной форсунки для подани хлора до другой реакция хлорирования полностью завершалась. Это является весьма существенным условием гладкого протекания процесса хлорирования по Хэссу — Мак-Би, как будет подробнее рассмотрено в разделе, посвященном хлорированию метана. [c.161]

    Хлор при комнатной температуре и н-бутан, нагретый до 180°, подводятся раздельно в смесительную камеру 2 (рис. 37а) в объемном соотношении 1 3. Скорость газовой смеси на входе в реакционное пространство составляет около 7 м1сек. В реакционном пространстве, где поддерживается температура 450°, находится активный уголь с размером зерна 0,4—2 мм, который перед началом процесса загружается в реактор через загрузочное устройство 5. Хлор полностью ваимо-действует с бутаном, образуя 90% монохлорбутана. Остаток состоит из дихлоридов 1И весьма небольших количеств трихло-ридов. [c.171]

    Тепло реакции отводят путем орошения водой наружных стенок реактора, впрыскивания воды внутрь, применения охлаждающих змеевиков и т, п. В первой стадии процесса, чтобы поддерживать температуру 150°, необходимую для преодоления инкубационого периода окисления, тепло подводят в виде пара. Впоследствии сама реакция начинает поставлять тепла больще, чем требуется для поддержания заданной температуры, в результате чего надо охлаждат содержимое реактора. [c.455]


Смотреть страницы где упоминается термин Подвод: [c.12]    [c.17]    [c.34]    [c.276]    [c.282]    [c.72]    [c.171]   
Смотреть главы в:

Высокооборотные лопаточные насосы -> Подвод


Насосы и насосные станции Издание 3 (1990) -- [ c.18 ]




ПОИСК







© 2024 chem21.info Реклама на сайте