Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состояние ферромагнитное

    При фазовых переходах второго рода непрерывно изменяются и первые производные от энергии Гиббса по температуре и давлению, т. е. энтропия и объем. Для фазового перехода второго рода невозможно существование метастабильных состояний, и каждая фаза может существовать только в определенной температурной области. Пр)имерами фазовых переходов второго рода являются переходы жидкого гелия в сверхтекучее состояние, железа из ферромагнитного в парамагнитное состояние, металла из обычного в сверхпроводящее состояние, переход порядок — беспорядок в сплавах типа -латуни и др. [c.326]


    К фазовым переходам второго рода относятся, например, переход вещества в критическое состояние (см. разд. 10.8), переходы из парамагнитного состояния в ферромагнитное и др. Такие переходы не сопровождаются выделением или поглощением теплоты энтропия, мольный объем остаются непрерывными функциями своих [c.159]

    Кюри. Многие вещества, которые в твердо.м состоянии при температурах, близких к комнатной, ведут себя как парамагнетики, при температурах ниже температуры жидкого гелия (4,2 К) проявляют слабые ферромагнитные или антиферромагнитные свойства. [c.132]

    То же Ферромагнитное состо яние Парамагнитное состояние Ферромагнитное состояние  [c.127]

    Р—парамагнитное состояние ферромагнитное состояние 5 —сверхпроводящее состояние. [c.106]

    Влияние магнитного состояния катализатора на его активность изучалось на большом числе ферромагнитных материалов. [c.12]

    Вещества с особо высокой магнитной восприимчивостью (например, железо, кобальт, никель) называются ферромагнитными. Вещества проявляют ферромагнетизм только в твердом состоянии. [c.188]

    Исследования внутренних эффективных полей на ядрах мессбауэровских изотопов и изучение механизма их происхождения чрезвычайно важны для понимания природы возникновения ферромагнитных, антиферромагнитных и ферримагнитных состояний. Исследование температурой зависимости величины внутреннего эффективного поля на ядре в магнитных веществах дает возможность исследовать магнитные фазовые превращения, определять значе-ния критической температуры магнитного перехода. [c.214]

    Вещества с аномально высокой магнитной восприимчивостью (например, железо) называются ферромагнитными. Ферромагнетизм проявляется ими только в твердом состоянии. [c.88]

    Чем мельче зерна, тем лучше используется обменная емкость ионита, но при этом, в зависимости от применяемой аппаратуры, возрастает или гидравлическое сопротивление слоя сорбента, или унос малых зерен ионита раствором. Последнего можно избежать, применяя иониты, содержащие ферромагнитную добавку. Это позволяет удерживать мелкозернистый материал во взвешенном состоянии в зоне магнитного поля, через которую движется раствор. [c.302]

    Рассмотрим кристаллическую решетку, в которой для каждого узла существуют два способа, две возможности быть занятыми. Два рода возможных состояний обозначим А и В. В случае бинарного сплава или твердого раствора символы А и В будут относиться к атомам (молекулам) разного сорта. В модели ферромагнитного вещества два рода состояний — это атомы данного металла (например, железа) с различной ориентацией электронного спина допустим, А — атом железа с положительной ориентацией спина, В — атом железа с отрицательной ориентацией спина. Вообще говоря, в узлах металлической решетки находятся положительные ионы, но для той модели, которая будет рассматриваться, это несущественно. Для простоты частицы А и В, находящиеся в узлах решетки, будем далее называть всегда атомами. Оговорим, однако, что А и В не могут быть ионами разного знака случай ионного кристалла АВ из рассмотрения исключается. [c.337]


    Установлено, что состав и магнитные свойства продуктов горения изменяются в процессах их очистки от оксидов железа и избытка Сбо, но сохраняется зависимость от соотношения Ре/Сбо в исходной смеси реагентов. Выделен ферромагнитный комплекс РеО(ОН)б Сбо. Уменьшая температуру термического взаимодействия и количество железа в исходной смеси реагентов, нам удалось найти условия синтеза композитов содержащих наночастицы магнетита, включенные в решетку фуллерита-ферромагнетиков, имеющих переход в состояние, подобное спиновому стеклу при 120 50К. [c.86]

    Как видно из табл 6 нетермообработанные покрытия полученные нз кислого раствора содержащие более 8 % фосфора — неферромагнитны а после 1 ч термообработки при 400 С они становятся магнитными Покрытия полученные из щелочного раствора и содержащие до 5 % Р в нетермообра бота ином состоянии ферромагнитны [c.18]

    Магнитные характеристики N1—Р покрытий. Коэрцитивная сила (Не), остаточная индукция (В ), максимальная индукция (В ) покрытий определяются технологией их получения, химическим составом и структурным состоянием. Так, если магнитные свойства покрытий с 3% Р близки к магнитным свойствам электролитического никеля, то покрытие с 11% Р немагнитно. Термообработанные N1—Р покрытия при прочих равных условиях более магнитны, чем нетермообработанные. Как видно из табл. 58, нетермообработанные, полученные из кислого раствора и содержащие более Р покрытия неферромагнитны после 1 ч термообработки при 400° С они становятся магнитными. Что касается покрытий, полученных из щелочного раствора и содержащих до 5% Р, то они и в нетермо-обработанном состоянии ферромагнитны. Измерения показали также, что восприимчивость насыщения электролитического никеля, рассчитанная на 1 г, составила 14,9-10" (при толщине покрытия 60 мкм), а химически восстановленного никеля — 1,6-10 (толщина слоя 42 мкм). Относительная магнитная восприимчивость электролитического никеля (литой никель взят в качестве эталона) оказалась равной 37,3%, в то время как для химически осажденного никеля эта величина составляла всего 4%. [c.119]

    По физическим принципам действия основных элементов—реле—все импульсные машины делятся на три типа электромагнитные, электронные и магнитные. В первых—приказы оператора выполняют электромагнитные реле, замыкающие или размыкающие определенные контакты во вторых—переключение в цепях осуществляется подачей импульсов на сетки электронных ламп, объединенных в небольшие группы (так называемые тригерные ячейки) в третьих—та же операция осуществляется изменением магнитного состояния ферромагнитного элемента. Поскольку срабатьтание электромагнитных реле связано с механическим движением, а электронных и магнитных—лишь с изменением поля, скорость счета оказывается резко различной. В электромагнитных машинах элементарная операция занимает приблизительно доли секунд, а в электронных и магнитных—доли микросекунд. [c.398]

    При ФП второго рода плотность вещества, энтропия и термодинамические потенциалы не испьггывают скачкообразных изменений, а производные от теплоты, объема - теплоемкость, сжимаемость, коэффициент термического расширения фаз, наоборот меняются скачком. Примеры переход гелия в сверхтекучее состояние, железа из ферромагнитного состояние в парамагнитное в точке Кюри, соответственно теплота ФП второго рода равна нулю. Зависимость температуры равновесного перехода от давления определяется уравнением Эренфеста. Фазовыми переходами третьего и более высоких родов - такие переходы при которых не изменяется теплоемкость. Теория таких переходов разработана П. Кумаром и сопгр [c.20]

    Магнитные методы НК основаны на измерении параметров магнитных полей, создаваемых в контролируемом объекте путем его намагничивания. Поэтому магнитный вид неразрушающего контроля применяют в основном для контроля изделий из ферромагнитных материалов, т.е. из материалов, которые способны существенно изменять свои магнитные характеристики под действием внешнего (намапшчиваюшего) магнитного поля. Операция намагничивания (помещения изделия в магнитное поле) при этом виде контроля является обязательной. Съём информации может быть осуществлён с полного сечения образца (изделия), либо с его поверхности. Состояние вещества при его намагничивании (воздействии на него магнитного поля) характеризуется намагниченностью М - векторной физической величиной, количественно равной [c.103]

    При значительном избытке железа по отнощению к фуллерену (5-10 раз) спектр МР представлен неоднородно ущиренной линией, температурная зависимость щирины и положения ее близки к полученным для продуктов термораспада Ре(асас)з.Температура синтеза не влияет существенно на параметры МР и магнитные свойства веществ. Снижение концентрации железа в исходных продуктах приводит к более симметричной линии МР, эффективный g-фактор приближается к 2, присутствие ЭПР радикала кристаллического Сбо свидетельствует об улучшении однородности внутреннего магнитного поля вещества. Магнитные характеристики соответствуют ферромагнитному состоянию. [c.163]


    ВЛИЯНИЯ на АКТИВНОСТЬ катализатора различных воздействий нетепловой природы, а именно магнитного и электрического полей,, радиацин и ультразвуковых колебаний, приведены в виде графиков на рис, 8—12, Как видно из приведенных данных, указанные формы энергии оказывают большое влияние на каталитическую активность. Во всех описанных случаях были подобраны такие системы, которые исключали возможность изменения кристаллографической структуры твердого тела, и поэтому наложение эффектов в этих опытах не могло иметь места [16]. Изучение зависимости активности катализатора от его магнитного состояния проводились на материалах с ферромагнитными свойствами, поскольку при этом переход через точку Кюри не сопровождается изменением типа решетки. [c.12]

    Панокристаллпческое состояние вещества характеризуется и другими особенностями. При уменьшении раз.меров кристалла до 6—7 нм в поперечнике ферромагнитные свойства железа и никеля переходят в парамагнитные. Электронные свойства нанокристаллов также отличаются от сврйств обычных материалов. При этом в бо.тьшей мере проявляются квантовые эффекты. Поэтому нанокристаллы открывают перспективы в создании новых информационных систе.м. [c.167]

    Результаты кинетических исслелований приводят к выводу о то.м, что парамагнитному состоянию соответствует более высокая активность, чем ферромагнитному состоянию, несмотря на то, что суммарная величина энергии активации в последнем случае имеет более низкое значение. Ранее было показано, что существенное влияние на каталитическую активность оказывает способность катализатора отдавать или принимать электроны. Описанные вы-ще явления, по-видимому, указывают на то, что способность катализатора к обмену электронами сильнее выражена, когда он находится в парамагнитном состоянии. [c.14]

    Фазовый переход — обобщенное понятие, которое охватывает все процессы, связанные с переходом в(зщества из одной фазы гетерогенной системы в другую изменение агрегатного состояния или кристаллической модификации веществ, их растворение и выделение из раствора, переход из одного растворителя в другой, превращение ферромагнитных материалов в парамагнитные и т. п. [c.160]

    Ключевым понятием синергетики является представление о порядке и беспорядке в структуре материи. Речь идет об изучении и описании переходов в веществах от уЧюрядоченных состояний к неупорядоченным и обратно. В качестве примеров можно привести переходы в физических системах из парамагнитного состояния в ферромагнитное или из жидкого состояния в твердое кристаллическое. Общие свойства различных систем, связанные с упорядоченностью или разупорядоченностью струк- гурных образований, выражаются корреляцией между ними. Описание систем при изучении подобных явлений производится некоторыми внутренними параметрами системы, выраженными корреляционными функциями, определяющими степень внутренней упорядоченности системы. Корреляционные функции могуг принимать различные значения от минимальных до максимальных. Наряду с этим, очевидно, можно рассматривать некоторые промежуточные состояния между порядком и беспорядком в системе, связанные с корреляцией пространственно-временных флуктуаций положения структурных образований в системе. Изучение пространственно-временных корреляций дает наиболее полную информацию о системе. [c.173]

    Это уравнение носит название уравнения Эренфеста. К фазовым переходам второго рода относится, например, переход из ферромагнитного в парамагнитное состояние или переход металлов из обычного металлического состояния в сверхпроходящее. [c.272]

    Фазовые переходы ра.зделяются на два класса. К фазовым пере.кодам первого рода относятся испарение, возгонка, плавление, полиморфные переходы и т.д. Эти переходы сопровождаются выделением или поглощением теплоты и изменением объема фазы. Фазовые переходы второго рода не обладают этими качествами. Примерами фазовых переходов второго рода могут служить такие процессы, как переход железа из ферромагнитного состояния в парамагнитное а-Ре—ь -Ре при 769 °С без изменения кристаллической структуры металла и при сохранении объема фаз (изменение энтропии в этом переходе равно нулю) переход металла в сверхпроводящее состояние переход жидкого гелия в сверхтекучее состояние. [c.9]

    Все многообразие фазовых переходов классифицируется на фазовые переходы первого и второго родов. При фазовом пе- )еходе первого рода выделяется или поглощается определенное количество теплоты, изменяются объем и плотность вещества, его энтропия, теплоемкость и т, п. Фазовые переходы первого рода — плавление, испарение, возгонка, полиморфное превращение и другие — характеризуются равенством изобарных потенциалов двух сосуществующих в равновесии фаз. В отличие от фазовых переходов первого рода для фазовых переходов второго рода свойственно не только равенство изобарных потенциалов, но и равенство энтропий, объемов и плотностй фаз. К фазовым переходам второго рода относятся магнитные превращения при температуре Кюри, переход вещества в сверхпроводящее состояние, появление сверхтекучести у гелия, переход из парамагнитного состояния в ферромагнитное и др. Одно из объяснений фазовых переходов второго рода состоит ь изменении симметрии частиц системы, например, переход системы частиц с беспорядочно направленными спинами в систему частиц с преимущественной ориентацией спинов или переход нз неупорядоченного распределения атомов А и В по узлам кристаллической решетки в упорядоченное, [c.219]

    Приведенные схемы объясняют также магнитные свойства веществ. Вещества делятся на диамагнитные и парамагнитные. Первые оказывают сопротивление прохождению магнитного поля большее, чем вакуум, вторые — меньшее, чем вакуум. Поэтому внешнее магнитное поле выталкивает диамагнитные вещества и втягивает парамагнитные. Столь различное поведение веществ объясняется характером их внутренних магнитных полей, складывающихся из собственных магнитных моментов нуклонов и электронов. Но магнитный момент атома определяется главным образом суммарным спиновым магнитным моментом Электронов, так как могнитные моменты протонов и нейтронов примерно на три порядка меньше моментов электронов. Если два электрона находятся в одной орбитали, то их магнитные поля замыкаются. Если в веществе магнитные моменты всех электронов взаимно скомпенсированы, т. е. все электроны спарены, то это вещество диамагнитное. Напротив, если в орбиталях имеются одиночные электроны, то вещество проявляет парамагнетизм. Примерами диамагнитных веществ могут служить молекулярные водород, азот, фтор, углерод и литий (в газообразном состоянии). К парамагнитным относятся молекулярный бор, кислород, оксид азота). Вещества с аномально в .1сокой магнитной восприимчивостью (например, железо) называются ферромагнитными. Ферромагнетизм проявляется ими только в твердом состоянии. [c.70]

    Простые вещества. Физические и химические свойства. В компактном кристаллическом состоянии железо, кобальт и никель представляют собой серебрпсто-белые металлы с сероватым (Ре), розоватым (Со) и желтоватым (N1 ) отливом. Чистые металлы пластичны, однако даже незначительное количество примесей (главным образом, углерода) повышает их твердость и хрупкость, что особенно заметно у кобальта. Все три металла ферромагнитны. При нагревании до определенной температуры (точка Кюри) ферромагнитные свойства исчезают и металлы становятся парамагнитными. Переход ферромагнетика в парамагнетик не сопровождается перестройкой кристаллической структуры и представляет собой фазовый переход 2-го рода, при котором отсутствует тепловой эфсрект превращения. [c.401]

    Согласно изложенному во. 1, всякое ферромагнитное тело в немагнитном состоянии спонтанно распадается на большое число доменов, намагниченных до насыщения (при данной температуре) Pj. Если объем t-Toro домена обозначить через У,-, то его результирующая намагниченность будет равна При отсутствии внешнего магнитного поля и остаточной намагниченности-ферромагнитный образец в целом не намагничен и os б,- = 0  [c.321]

    N1—В-покрытия, содержащие 4,3 % бора, ферромагнитны как в исходном состоянии, так и после термообработки При содержании в покрытии 5,7 % бора в исходном состоянии максимальная индукция составляет 0,014 Тл, остаточная индукция 0 0014 Тл, коэрцитивная сила 2,7- Ю А/м При содержании в гГокрытий 6,4 % бора и более оно не ферромагнитно Термическая обработка в интервале температур 200—300 °С изменяет магнитные характеристики N1—В-покрытий, причем значения коэрцитивной силы, максимальной индукции я величины Вг/ Вт — Не) имеют явно выраженную зависимость от температуры нагрева [c.53]

    Разница в магнитном состоянии труб объясняется комплексом физических свойств металла, связанных с его сопротивлением намагничиванию. К таким свойствам прежде всего следует отнести легко измеряемую неразрушающим способом коэрцитивную силу, т. е. магнитное напряжение, необходимое для уничтожения остаточного магнетизма и размагничивания железа. Возможно определять стойкость экранных труб из ферромагнитной стали к внутрикотловой коррозии путем измерения коэрцитивной силы ме галла. Чем ниже коэрцитивная сила, тем быстрее приобретает металл трубы повы-щенную намагниченность в процессе эксплуатации, тем меньшей стойкостью к внутрикотловой и прежде всего к водородной коррозии обладает данная труба. [c.55]

    О.в. определяет в значит, степени магн. св-ва в-ва. Так, состояние металлич. кристалла с параллельными спинами электронов (ферромагнитное) м. б. термодинамически более устойчиво, чем состояние с беспорядочно ориентированными спинами электронов, лишь в том случае, если обменный интеграл А положителен. Характерная для ферромагнетика точка Кюри (т-ра, выше к-рой у в-ва исчезают ферромагн. св-ва) м.б. определена как т-ра, при к-рой энергия теплового движения атомов становится равной термодинамич. вьпп-рышу в энергии при параллельной ориентации спинов. [c.319]

    При Ф. п. П рода сама величина О и первые производные С по Т, р и др, параметрам состояниям меняются непрерывно, а вторые производные (соотв. теплоемкость, коэф. сжимаемости и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не вьщеляется и не поглощается, явления гистерезиса и метастабильные состояния отсутствуют. К Ф. п. П рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупорядоченное (ферро- и ферримагнитное в Кюри точке, анти-ферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв, во всей решетке или в каждой из магн, подрешеток) переход диэлектрик - сегнетоэлектрик с появлением спонтанной поляризации возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах) переход смектич, жидких кристаллов в нематич. фaзyi сопровождающийся аномальным ростом теплоемкости, а также переходы меяоду разл. смектич. фазами .-переход в Не, сопровождающийся возникновением аномально высокой теплопроводности и сверхтекучести (см. Гелий)-, переход металлов в сверхпроводящее состояние в отсутствие магн. поля. [c.55]


Смотреть страницы где упоминается термин Состояние ферромагнитное: [c.482]    [c.491]    [c.53]    [c.306]    [c.45]    [c.23]    [c.94]    [c.112]    [c.222]    [c.303]    [c.39]    [c.253]    [c.129]    [c.138]    [c.349]    [c.154]   
Интерметаллические соединения редкоземельных металлов (1974) -- [ c.24 , c.25 , c.33 ]




ПОИСК







© 2025 chem21.info Реклама на сайте