Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал фосфорилирования

    Хемиосмотическая теория сопряжения окисления и фосфорилирования. Эта гипотеза предложена в 1961 г П. Митчеллом причем значительный вклад в ее доказательство был сделан В. П. Скулачевым с соавторами. Согласно этой теории, фактором, сопрягающим окисление с фосфорилированием, является электрохимический, протонный потенциал АцН , возникающий на внутренней мембране митохондрий в процессе транспорта электронов. При этом предполагается, что мембрана непроницаема для ионов, особенно протонов, их транслокация с внутренней стороны мембраны (из матрикса) на наружную сторону внутренней мембраны митохондрий осуществляется за счет процесса окисления в дыхательной цепи, т. е. транспорта высокоэнергетических электронов. Возникающий электрохимический потенциал АцН+ является аддитивным он складывается из химического потенциала АрН и электрического со знаком (+) на наружной стороне мембраны (Avj/)  [c.203]


Рис. 9.8 . Образование сукцината из фумарата при помощи мембраносвязанной фумаратредуктазы. Этот процесс может быть сопряжен с созданием протонного потенциала на цитоплазматической мембране, что делает возможным окислительное фосфорилирование. Рис. 9.8 . <a href="/info/591328">Образование сукцината</a> из <a href="/info/105265">фумарата</a> при помощи мембраносвязанной <a href="/info/278374">фумаратредуктазы</a>. Этот процесс может быть сопряжен с созданием <a href="/info/591201">протонного потенциала</a> на цитоплазматической мембране, что делает возможным окислительное фосфорилирование.
    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]

    Природа остроумно решила эту проблему ценой дополнительных энергетических затрат в тех случаях, когда место включения электронов с окисляемого субстрата находится ниже энергетического уровня, на котором образуется НАД Н2, работает система обратного переноса электронов, т.е. лифт , поднимающий электроны по дыхательной цепочке в сторону более отрицательного потенциала, необходимого для восстановления молекул НАД" . Процесс обратного транспорта электронов требует энергии, и часть молекул АТФ, получаемых за счет окислительного фосфорилирования на конечном этапе дыхательной цепи, тратится для образования восстановителя. Окисление соединений с положительным окислительно-восстановительным потенциалом происходит, таким образом, без участия флавопротеинов и хинонов. Эти переносчики функционируют только в процессе обратного переноса электронов. Следовательно, у таких эубактерий дыхательная цепь работает в двух направлениях осуществляет транспорт электронов для получения энергии в соответствии с термодинамическим потенциалом и перенос электронов против термодинамического потенциала, идущий с затратой энергии, чтобы синтезировать восстановитель (см. рис. 97). [c.370]


    Мол. механизмы генерирования и утилизации энергии на промежут. этапах О.в. изучает биоэнергетика, к-рая рассматривает сопряжение биол. окисления с фосфорилированием. Это обусловлено тем, что своб. энергия гидролиза осн. продукта фосфорилирования-АТФ и в меньшей степени др. фосфатных производных, напр, гуанозинтрифосфата, креатинфосфата,-обеспечивает в сопряженных р-циях синтез сложных соед., мьппечное сокращение, транспорт соед. через биол. мембраны против градиента концентрации (активный транспорт), создание на мембране электрич. потенциала, разряд к-рого, в частности, обеспечивает проведение нервного импульса и др. биоэлектрич. явления. Энергия гидролиза АТФ может также трансформироваться в световую энергию или служить в организме источником тепла. [c.316]

    Доказательством верности теории Митчелла является то, что существование мембранного потенциала в митохондриях стало бесспорньгм, а также то, что ионофоры (валиномицин, грамицидин, динитрофенол) создают условия для свободного перемещения ионов Н , в результате исчезает протонный градиент, и синтез АТФ прекращается. Вещества, нарушающие градиент Н , называют разобщителями окислительного фосфорилирования. Количество АТФ, синтезируемое в процессе распада углеводов Поскольку окисление одной молекулы НАДН сопровождается синтезом трех молекул АТФ, а всего в ходе гликолиза, пируватдегидрогеназной реакции и реакций ЦТК образуется десять НАДН, то всего генерируется 30 молекул АТФ, а за счет окисления двух молекул ФАДН2 образуется еще четыре молекулы АТФ, т.е. всего 34 молекулы АТФ. К этому числу следует добавить две молекулы АТФ, синтезировавшихся в гликолизе, и две молекулы ГТФ, появившихся в ЦТК за счет субстратного фосфорилирования. [c.89]

    Следует подчеркнуть, что последовательность расположения переносчиков такова, что значения потенциала ставновятся все более положительными. Каждый предыдущий, более восстановленный переносчик, находится в более высокоэнергетическом состоянии, чем каждый последующий. Другими словами, электроны переходят на все более низкий энергетический уровень. Компоненты дыхательной цепи расположены во внутренней митохондриальной мембране в виде высокоупорядоченных надмолекулярных ансамблей. Показано, что перенос электронов от НАДН к ФМН (1-й участок), от цит.Ь к ЦИТ.С) (2-й участок) и от цит. а, к О2 (3-й участок) сопряжены с фосфорилированием АДФ, т.е. происходит образование АТФ. Данные три участка называют участками окислительного фосфорилирования. Выяснено, что перенос пары электронов от НАДН к О2 сопровождается синтезом трех молекул АТФ. Это было показано отношением Р/О, т.е. числом молей Р, превращаемых на 1 грамм-атом израсходованного кислорода. [c.86]

    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]

    В работе предлагается сравнить действие разобщителей на процессы окислительного фосфорилирования и активного транспорта Са + в митохондриях печени крысы. Так как протекание обеих эндергонических реакций сопряжено с поглощением (синтез АТФ) или освобождением (транспорт Са +) стехпометрических количеств ионов Н+, следует воспользоваться установкой для непрерывной регистрации pH стеклянным Н+-чувствительньш электродом (с. 474). Изменения трансмембранного потенциала прослеживают по распределению К+ (в присутствии валиномицина в бескалиевой среде — с. 442) с помощью К+-чувствительного электрода или по абсорбции проникающих синтетических катионов (например, сафранин, оксанол и др.) с помощью двухволновой спектрофотометрии. [c.469]

    Начало биохимическому подходу к изучению обмена веществ было положено исследованиями катаболизма и в особенности дыхания и брожения. При этом биохимики условились при изучении окислительно-восстановительных потенциалов обозначать окислительный потенциал как - -ие, тогда как физикохимики обычно обозначают окислительный потенциал как —ае. Подобным же образом, в термодинамике биохимиков интересует теплота сгорания тех или иных соединений и в качестве исходных продуктов они рассматривают продукты полного сгорания (СО2 и Н2О). Для физикохими-ков же исходным состоянием является состояние элементов при стандартных условиях. Таким образом, макроэргические соединения обладают сравнительно большой теплотой сгорания, но сравнительно малой теплотой образования. В этом смысле жиры и углеводы— это макроэргические соединения. Однако Липман использовал свой термин только применительно к тем соединениям, при гидролизе которых происходит значительное изменение свободной энергии. Поскольку, как оказалось, современные методы дают более низкие значения для свободной энергии гидролиза, в настоящее время наибольшее внимание уделяется ангидридосоединениям. Проблема анаболизма в значительной степени является проблемок создания ангидридных связей в водном окружении клетки. Процесс окислительного фосфорилирования, при котором из АДФ и неорганического фосфата (Фн) образуется АТФ, рассматривается в гл. 5, но здесь мы хотим обратить внимание читателя на возможное значение окислительного фосфорилирования в липидных мембранах митохондрий. [c.89]


    Мембраны играют также важную роль в механизме освобождения и потребления энергии в живых организмах. Различные виды живых клеток получают энергию из окружающей среды в разных формах, однако накопление и использование ее происходит в виде аденозинтри-фосфата (АТФ). При передаче энергии АТФ переходит в аденозин-дифоефат (АДФ), который в свою очередь за счет разных видов энергии присоединяет фосфатную группу и превращается в АТФ. Процесс образования АТФ называется фосфорилированием. Этот процесс в организмах животных и человека сопряжен с процессом дыхания. Аистом генерирования АТФ в животных клетках являются особые компоненты клеток — митохондрии, которые служат своеобразными силовыми станциями , поставляющими энергию, необходимую для функционирования клеток. Митохондрия окружена двумя мембранами внешней и внутренней. На внутренней мембране, содержащей ферментные комплексы, происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.140]

    Стандартная свободная энергия гидролиза АТР до ADP и Рг (разд. 2.4, 2.11) в какой-то степени зависит от присутствия Mg +, и обычно ее считают равной примерно —7 ккал. Это относится к случаю, когда АТР, ADP и Рг находятся в эквимоляр-ных концентрациях на самом деле потенциал фосфорилирования (свободная энергия образования АТР) зависит от концентрации компонентов реакции следующим образом  [c.106]

    Потенциал фосфорилирования в противоположность энергетическому заряду зависит от концентрации Р и прямо связан со свободной энергией, высвобождаемой при. расщеплении АТР. [c.20]

    Экспериментально определяемые значения коэффициента Р/0, как правило, несколько ниже теоретически рассчитанных. Следовательно, процесс дыхания не всегда является процессом, жестко сопряженным с фосфорилированием. Нарушают систему сопряжения процессов окисления в дыхательной цепи и фосфорилирования так называемые разобщающие агенты (разобщители). К ним относятся вещества, подавляющие синтез АТФ (фосфорилирование), в то время как окисление субстратов, потребление кислорода (дьгхание) продолжаются. В качестве разобщителей в экспериментальной биохимии используют 2,4-динитрофенол, динитрокрезол, пентахлорфенол и др. В присутствии разобщителей коэффициент Р/0 равен нулю, а энергия окисления в этом случае трансформируется в тепловую форму. Следовательно, разобщители обладают пирогенным действием, т. е. повышают температуру тела. Большинство разобщающих агентов являются липофильными и их ингибирующее действие на процесс фосфорилирования легко объяснимо благодаря способности этих соединений обеспечить протонную проводимость сопрягающей мембраны митохондрий и тем самым препятствовать образованию электрохимического потенциала, а следовательно, и синтезу АТФ (15.3.5). [c.201]

    Два цитохрома ведут себя особым образом и представлены табл. 10-6 дважды. Потенциал цитохрома Ьт в средней точке меняется от —0,030 В в отсутствие АТР до +0,245 В при высоких концентрациях АТР. С другой стороны, значение Е° для цитохрома Сз =+0,385 В снижается в присутствии АТР до 0,155 В. Этот сдвиг потенциала дает основание думать, что с синтезом АТР сопряжено окнс- ление высокоэнергетической восстановленной формы цитохрома OtJ В присутствии высоких концентраций АТР образование этого проме-i Жуточного соединения путем восстановления оказывается более труд- ным (разд. Д, 9,а). Противоположное по направлению изменение для цитохрома Ьт свидетельствует о том, что высокоэнергетической этом случае является окисленная форма [уравнение (10-11)]. Правомерность таких выводов зависит от точности и достоверности, с какова спектроскопические методы позволяют измерять отношение [окисл.]/[восстан.]. На основании этих результатов делали даже вывод о том, что цитохромы Ьт и аа непосредственно участвуют в процессе окислительного фосфорилирования [72—75]. Однако с этим далеко не все согласны [77]. [c.409]

    При одновременном добавлении АДФ и Са + в аэробную суспензию энергизованных митохондрий окислительное фосфорилирование не происходит до тех пор, пока весь добавленный Са + не поглотится внутрь митохондрий. Это свидетельствует об отсутствии простой конкуренции между процессами и не может быть удовлетворительно объяснено различиями кинетических параметров исследуемых эндергонических реакций. Ясное понимание таких взаимоотнощений может быть получено при анализе энергетического состояния митохондрий (величины трансмембранного потенциала) при их взаимодействии с АДФ и ионами Са +. [c.469]

    Каким же образом электрохимический потенциал протонов используется в синтезе АТФ Процесс фосфорилирования катализируется Н -зависимым АТФ-азным комплексом Н -АТФ-синтетаза. Этот сложный комплекс состоит из растворимого каталитического компонента Fj и мембранного компонента Fo (рис. 15.8). [c.204]

    Для оценки потенциала фосфорилирования аденилатной системы внутри клеток предлагалось использовать неско.тько разных показателей. В качестве одного из них было взято соотношение fATP]/[ADP] [Pj] (названное степенью фосфо-рилироваиия р). Оно непосредственно связано со свобол,ной энергией гидролиза АТР [уравнение (.3-28)]. Величина R(, внутри клеток может достигать значения 10 М , что дает вклад в AG гидролиза АТР, равный —22,8 кДж-моль Аткинсон с сотр.б-г предложили другую величину, так называемый энергетический заряд , представляющий собой мольную долю адениловой кислоты, заряженной путем превращения ее в АТР. При этом ADP рассматривается как полу-заряженная форма. [c.222]

    Для оценки потенциала фосфорилирования аденилатной системы внутри клетки может быть использовано соотношение, названное степенью фосфорилирования (Яр)  [c.29]

    И имеет максимальное значение, когда большинство аденилатов присутствует в форме АТР. Так как в лишенных оболочки хлоропластах почти весь добавленный ADP легко превращается в АТР, потенциал фосфорилирования, полученный исходя из наблюдающегося соотношения мемеду аденилатамн в системе, соответствует реальному изменению свободной энергии. Подобные измерения, проведенные Крайепгофом, дали величину около 14 ккал. Соответствующий электрический потенциал можио рассчитать (разд. 2.13) по формуле [c.106]

    Однако если цепь переноса электронов на участке от р-оксибутира-та до цитохрома к жестко сопряжена с синтезом одной молекулы АТР, то наблюдаемый потенциал переносчика будет определяться не только приложенным потенциалом Е уравновешивающей системы, но также и степенью фосфорилирования адениловой системы [уравнение (10-13)]  [c.407]

    По значениям митохондриальные переносчики разбиваются на четыре изопотеициальиые группы с потенциалами —0,30, 0, 0,22 и / 0,39 В (табл. 10-6). Когда жестко сопряженные митохондрии переходят в состояние 4 (низкое содержание ADP, высокое содержание АТР, присутствие Ог, но низкая скорость дыхания), наблюдаемые потенциалы изменяются. У самой низкой изопотенцнальной группы, включающей NAD+/NADH, потенциал снижается до —0,38 В, что соответствует состоянию восстановления переносчиков слева от первого участка фосфорилирования на рис. 10-И. Группы 2 и 3 остаются вблизи их Потенциалов средней точки —0,05 и +0,26 В. В этих условиях разность потенциалов между последовательными группами переносчиков составляет 0,32 В, чего вполне достаточно для образования одной молекулы АТР на каждую перенесенную пару электронов, при отношении i p 10 М [уравнение (10-13)]. [c.409]

    Высокий потенциал переноса групп может быть сохранен в последующих реакциях либо одной группой, либо другой, но не двумя одновременно. Таким образом, замещение у атома фосфора кислородом ADP приведет к регенерации АТР и атака углерода —SH-группой даст тиоэфир. Некоторые другие соединения, приведенные в табл. 11-1, также могут расщепляться по двум путям, давая разные активируемые группы, например фосфосульфатангидрид, еноилфосфат и карбамоилфосфат. Вероятнее всего, процесс расщепления АТР может быть сопряжен с синтезом активируемых групп только при условии образования промежуточных соединений этого типа. О важности таких общих промежуточ- ых соединений в синтезе АТР на субстратном уровне фосфорилирования речь уже шла выше (гл. 8, разд. 3,5). [c.461]

    Эту величину также называют фосфатным потенциалом нлн потенциалом фосфорилирования. Однако некоторые под фосфатным потенциалом понимают свободную энергию образования АТР в данных конкретных условиях, т. е. 4-34,5 кДж-моль- - --Н-ЛГ 1п ([ATP]/[ADP]-[Pi]). Логично потенциал измерять в вольтах, как в уравнении (3 6 )., о яэбежанве путаницы этими терминами Л]гчше не пользоваться. [c.406]

    Клеточные мембраны у всех организмов проявляют полифун-кциональные свойства осморегуляция, барьерные функции с селективной проницаемостью за счет пор, насосов, рецепторов, транспорт веществ (в том числе активный с затратой энергии), участие в создании мембранного потенциала, в превращении энергии при фотосинтезе и окислительном фосфорилировании [c.101]

    Таким образом, можно предполагать, что дыхание заряжает митохондриальную мембрану, а окислительное фосфорилирование разряжает ее, используя энергию мембранного потенциала для синтеза АТФ. Таким образом, при переносе одной пары электронов от НАДНа к кислороду образуются 3 молекулы АТФ, а от ФАДНд - 2 молекулы АТФ. [c.57]

    Восстанавливающий фермент - метил-СоМ-метилредуктаза-представляет собой мультиферментный комплекс, который содержит, в частности, белковые факторы i 43o и гидрогеназу. Вероятно, реакция всегда сопровождается выведением из клетки протонов, и создающийся в результате этого протонный потенциал доставляет энергию для регенерации АТР. Из этих результатов можно заключить, что вообще метанобразующие бактерии синтезируют АТР не путем фосфорилирования на уровне субстрата, а путем окислительного фосфорилирования в анаэробных условиях ( анаэробное дыхание ). [c.320]

    Механизм фотосинтетического фосфорилирования сходен с синтезом АТФ в процессе окислительного фосфорилирования в митохондриях. Система переносчиков электронов интегрирована в мембрану тилакоида таким образом, что перенос пары электронов создает поток протонов с наружной поверхности тилакоида внутрь, pH на внутренней поверхности тилакоида может достигать 4 и ниже. Таким образом, на мембране создается электрохимический протонный потенциал АцН+, который используется интегрированной в мембрану Н -зависимой сиитетазой для синтеза АТФ (рис. 16.3). Структура этого фермента аналогична митохондриальной АТФ-синтетазе (гл. 15) и обычно обозначается как СРд—СР Символ С означает, что этот ферментный комплекс локализован в хлоропластах сЫогорШз ) и, подобно митохондриальной Н" -зависимой-АТФ-синтетазе, включает гидрофобный, интегрированный в мембрану тилакоида компонент (СРд) и гидрофильный комплекс (СР]), катализирующий синтез АТФ. [c.215]

    Научные работы посвящены изучению механизма превращения энергии в биологических мембранах. Исследовал трансформацию химической энергии в электрическую на мембранах митохондрий, роль мембранного потенциала как фактора, сопрягающего освобождение и аккумуляцию энергии в клетке. Открыл терморегуляторное разобщение процессов дыхания и фосфорилирования и сделал вывод о том, что вещества-разобщители являются переносчиками ионов через биологические мембраны. Провел самосборку протеолииосом, генерирующих электрический ток, что явилось доказательством суще- [c.466]

    Как видно из рис. 2, электроды из сульфосмол имеют водородную функцию (при сыа+ = 0,01 т) в кислой области до pH 2,5 (тн+ /пыа+ 1 3) из карбоксильной смолы КРФФУ —до pH 4 (тн+ 1 ЮО) и для фосфорилированной смолы РФ до pH 3(тн+ ягма+= 1 Ю). При более высоких значениях pH наблюдается переходная область, в которой потенциал мембраны зависит от концентрации обоих ионов (прямая переходит в кривую). Затем появляется натриевая функция (кривая переходит в горизонтальную прямую), которая начинается для сульфосмол при pH 5, для карбоксильной — при pH 7, для РФ — при pH 8. [c.147]

    В большинстве случаев изучение энергетического метаболизма св(эдится к оценке продукции АТФ и трансмембранного потенциала (A xiT), пороговая величина которого, необходимая ддз окислительного фосфорилирования, составляет 180—270 мВ, A XiT формируется на клеточных мембранах у различных организмов (кроме облигатных анаэробов) [c.273]

    Электрохимический потенциал способен совершать полезную работу, он заставляет протоны двигаться в обратном направлении, но мембрана непроницаема для них, кроме отдельных участков, называемых протонными каналами. Обратный перенос протонов в матрикс является экзоэргическим процессом, высвобождающаяся при этом энергия используется на фосфорилирование АДФ. Эту реакцию катализирует фермент Н+-АТФ-синтетаза, располагающаяся в области протонных каналов на внутренней поверхности внутренней мембраны (подробнее см. тему Транспорт ). [c.177]

    Функция фумарата не сводится к роли простого акцептора, взаимодействующего с NADH2, который образуется при окислении гексоз. Для пары фумарат/сукцинат окислительно-восстановительный потенциал E = — 30 мВ. Фумарат может акцептировать электроны, которые поставляются переносяпщми водород коферментами и уже прошли часть пути по дыхательной цепи поэтому он делает возможным окислительное фосфорилирование. Такого рода фосфорилирование с фума-ратом в качестве конечного акцептора электронов можно отнести [c.322]

    Одновременное образование макроэргических ангидридов и восстановительного потенциала (НАДФ-Н г) возможно потому, что клетки обладают двумя пиридиннуклеотидными коферментами и двумя комплексами ферментов для окисления углеводов. Реакции цикла Кребса можно рассматривать как механизм, обеспечивающий образование НАД-Нг в качестве субстрата для окислительного фосфорилирования. Вне митохондрий (и, следовательно, вне какой-либо связи с водородпереносящей системой) сосредоточены ферменты пентозофосфатного пути, которые катализируют суммарную реакцию  [c.98]


Смотреть страницы где упоминается термин Потенциал фосфорилирования: [c.107]    [c.20]    [c.20]    [c.22]    [c.472]    [c.103]    [c.34]    [c.125]    [c.454]    [c.133]    [c.408]    [c.731]    [c.298]    [c.267]    [c.245]   
Биохимия Том 3 (1980) -- [ c.406 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфорилирование



© 2024 chem21.info Реклама на сайте