Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смесители частиц

    Функция f (t) dl выражает также вероятность того, что поступающие в смеситель частицы жидкости выйдут из него через интервал времени t. Дайте вывод этой функции в терминах теории вероятности .  [c.219]

    Конструктивные особенности устройства обеспечивают дополнительное воздействие на материал, транспортируемый через помещенный во вращающееся электромагнитное поле выгрузочный патрубок. На заряженные в результате трения о диэлектрические покрытия рабочих органов смесителя частицы смешиваемых компонентов в процессе выгрузки дополнительно действует сила электромагнитного поля. Таким образом, смешивание компонентов происходит на всех этапах, включая и процесс выгрузки из смесителя, что повышает качество смешивания и улучшает условия выгрузки. [c.13]


    Источником тепловой энергии, необходимой для зажигания пылевоздушных смесей (находящихся в смесителях, мельницах, бункерах, трубопроводах, дозаторах и пр.), могут быть нагретые поверхности движущихся элементов статическое электричество или искровой разряд с электрооборудования, электрических проводов. Тепловая энергия резко возрастает при размере частиц более 70 мкм, поэтому наибольшей пожаро- и взрывоопасностью обладают пылевидные материалы. [c.151]

    Шарнирная опора вала шнека является одним из самых ответственных узлов смесителя. Опора размещена в сыпучем материале, поэтому ее конструкция должна обеспечить работу без смазочного материала и предотвратить истирание шейки вала шнека частицами перемешиваемого материала. [c.234]

Рис. 8.5. Мешалки центробежного лопастного смесителя типа ЦЛ для сыпучих материалов, для которых измельчение частиц недопустимо Рис. 8.5. Мешалки <a href="/info/829087">центробежного лопастного смесителя</a> типа ЦЛ для сыпучих материалов, для которых <a href="/info/981705">измельчение частиц</a> недопустимо
Рис. 8. 5. Мешалки центробежного лопастного смесителя типа ЦЛ для сыпучих материалов, ДЛЯ которых допустимо измельчение частиц Рис. 8. 5. Мешалки <a href="/info/829087">центробежного лопастного смесителя</a> типа ЦЛ для сыпучих материалов, ДЛЯ которых допустимо измельчение частиц
    Составим математическую модель процесса смешивания в циркуляционных смесителях, позволяющую рассчитывать 4м при любой структурной схеме потоков смешиваемого материала внутри смесителя. С этой целью сделаем следующие допущения процесс смешивания заканчивается в периоде / (см. рис. 8.1), когда преобладает механизм смешивания частиц компонентов их конвективным переносом по рабочему объему смесителя физико-механические свойства смеси ие оказывают существенного влияния на процесс смешивания (ранее отмечено, для для периода / это предположение подтверждено экспериментально) значение предельного коэффициента неоднородности смеси Ven незначительно отличается от значения коэффициента неоднородности смеси 1/ , достигаемого смесью к концу периода / процесса смешивания это позволяет принять с некоторой погрешностью i,t i i M- [c.239]


    При этих допущениях в качестве рабочей модели процесса смешивания в циркуляционных смесителях можно принять ячеечную модель. Разнос частиц отдельных компонентов по ячейкам опишем [c.239]

    Разобьем весь циркуляционный контур смесителя на ряд характерных зон, соединенных между собой потоком материала. Каждую зону смесителя заменим соответствующим числом ячеек (аппаратов) идеального смешения, соединенных в цепочку последовательно. Цепочка ячеек идеального смешения должна быть адекватна зоне по воздействию на поток частиц. Таким образом весь циркуляционный контур мы заменим некоторой системой цепочек из ячеек идеального смешения с той или иной топологией их соединения. [c.240]

    I В смесителях диффузионного смешивания частицы одного компонента постепенно внедряются в массу частиц другого компонента [c.248]

    В прямоточных смесителях компоненты смешиваются за счет хаотических перемещений частиц в поперечных сечениях потока, проходящего вдоль смесителя. В продольном направлении потока частицы движутся практически с одинаковой скоростью, т. е. без продольного их перемешивания. Подобный режим движения называют поршневым. Прямоточные смесители практически не обладают сглаживающей способностью, т. е. не способны изменить нарушения в соотношении компонентов, возникшие по тем или иным причинам во входном потоке. По этой причине их необходимо комплектовать высокоточными питателями. Такие смесители отличаются малыми энергетическими затратами, так как в большинстве из них частицы компонентов движутся через смеситель в разреженных потоках. [c.249]

    В смесителях диффузионного смешивания компоненты движутся вдоль корпуса смесителя в режиме, весьма близком к поршневому, но при наличии определенного продольного перемешивания частиц. Радиальное перемешивание в смесителях этого типа происходит со значительно большей скоростью, чем продольное перемешивание. Частицы компонентов перемещаются (диффундируют в слое) относительно некоторого поперечного сечения потока, двигающегося с одинаковой с потоком скоростью, как вперед, так и назад по потоку. В смесителях диффузионного смешивания сглаживаются флуктуации расхода компонентов, поступающих в смеситель, поэтому их можно комплектовать питателями средней точности. [c.249]

    Центробежный прямоточный смеситель рекомендуют использовать для смесей, для которых допустимо дробление частиц, хорошо сыпучих смесей и в случае, когда внутри смесителя должно быть небольшое количество материала. [c.250]

    В барабанных смесителях рекомендуют поддерживать каскадный режим движения материала в корпусе. При этом режиме частицы материала, находящиеся в глубине слоя, движутся по круговым траекториям вплоть до выхода на поверхность в верхней части ската, образованного свободной поверхностью слоя смешиваемого материала. После выхода частиц на поверхность слоя они скатываются по склону. Вся верхняя часть ската представляет собой слой небольшой толщины, состоящий из хаотически движущихся вниз частиц. Именно в этом тонком слое и происходит в основном процесс смешивания частиц. Каскадный режим движения частиц достигается при частоте вращения корпуса п < 0,6п,ф (где п р —критическая частота вращения корпуса, при которой частицы прижимаются к его стенкам — гл. 6, 6). [c.251]

    Химическое осветление сточных вод. Как указывалось ранее, метод химического осветления сточных вод основан на том, что нри добавлении к ним неорганических и(или) органических коагулянтов (флоккулянтов) при соответствующем pH среды происходит интенсивное хлопьеобразование, сопровождаемое удалением из сточных вод фосфора в виде нерастворимых солей — фосфатов и тяжелых металлов — в виде нерастворимых гидроокисей. Присутствующие во взвешенном и коллоидном состояниях загрязнения адсорбируются на образующихся хлопьях и также удаляются-. Эффективность химического осветления зависит от многих факторов, в частности от соотношения концентраций коагулянта, флоккулянта и загрязнений, от интенсивности и времени перемешивания обрабатываемых сточных вод при контакте их с химикалиями, от pH среды и температуры, от содержания солей, величины и знака заряда частиц и др. Обычно химическую обработку сточных вод проводят в реакторах-смесителях, в которых (в условиях интенсивного перемешивания) химикалии контактируют со сточными водами при оптимальной величине pH, которую устанавливают в ходе предварительных лабораторных и (или) пилотных испытаний. [c.136]

    Метод описания ФХС, который будет изложен в настоящей главе, является в некотором смысле противоположным тому формальному подходу, который обсуждался выше. Здесь исходным моментом решения задачи служит внутренняя структура системы. Поведение ФХС представляется как следствие ее внутренних физико-химических процессов и явлений, для описания которых привлекаются фундаментальные законы термодинамики и механики сплошной среды. В главе будут рассмотрены характерные схемы реализации этого подхода на примерах сложных физикохимических систем, построение адекватных математических описаний которых обычно вызывает затруднения. В частности, будут сформулированы принципы построения математической модели химических, тепловых и диффузионных процессов, протекающих в полидисперсных ФХС (на примере гетерофазной полимеризации) будет изложен метод построения кинетической модели псев-доожиженного (кипящего) слоя будет рассмотрен один из подходов к расчету поля скоростей движения смеси газа с твердыми частицами в аппарате фонтанирующего слоя сложной конфигурации на основе модели взаимопроникающих континуумов будет исследован процесс смешения высокодисперсных материалов с вязкими жидкостями в центробежных (ротационных) смесителях. [c.134]


    При решении задачи о движении массы по поверхности смесителя определяющими величинами являются скорость движения смеси в целом вдоль образующей ротора v , скорость коллективного осаждения твердых частиц в центробежном поле, толщины слоев о> 1, 2 п скорости Vax , Vax - Если сложить попарно уравнения системы (3.121)—(3.126), то получим уравнения [c.191]

    Оценка качества смеси. В процессе смешивания в рабочем объеме смесителя происходит взаимное перемещение частиц разных компонентов, находящихся до перемешивания раздельно илн в неоднородно внедренном состоянии. В результате перемещений возможно бесконечное разнообразие расположения частиц в рабочем объеме смесителя. В этих условиях соотношение компонентов в микрообъемах смеси —величина случайная, поэтому большая часть известных методов оценки однородности (качества) смеси основана на методах статистического анализа. Для упрощения расчетов все смеси условно считают двухкомпонентными, состоящими из так называемого ключевого компонента и условного, включающего все остальные компоненты смесей. Подобный прием позволяет оценивать однородность смеси параметрами распределения одной случайной величины — содержанием ключевого компонента в пробах смеси. В качестве ключевого компонента обычно выбирают такой компонент, который либо легко анализировать, либо распределение его в смеси особенно важно по техническим требованиям, [c.228]

    Плинтусы изготовляли следующим образом. Измельченные, высушенные до 3—5%-ной влажности, отсортированные органические частицы смешивали со связующим в лабораторном смесителе. Частицы, находящиеся в смесителе во взвешенном состоянии, покрывались тонким слоем рабочего раствора связующего, состоящего из смолы, парафиновой эмульсии и антисептика, который вводился в смеситель в распыленном состоянии при по.мощи пистолета-распылителя под давлением 3 кПсм . Полученную прессовочную смесь отвешивали порциями по 2,5—3 кг в зависимости от объемного веса изделий. При формовании изделий на прокладку ставили металлический профильный поддон (рис. 1), предварительно смазанный олеиновой кислотой. На поддон помещали формующую рамку (матрица), в которую затем высыпали, разравнивая при этом, прессовочную массу. Сверху вручную накладывали деревянный п -ансон и готовый прессовочный пакет вместе с прокладкой загружали в пресс для подпрессовки, которая производилась под давлением 30—35 кПсм . Затем пакет выгружали и снимали пуансон. Выдавленная масса собиралась и вручную насыпалась на углы и крайние кромки изделий, т. е. на места, где оказалось меньшее количество прессовочной массы. [c.50]

    Рёлен [37] сообщает, что если мелочь не возвращать в процесс немедленно, то она пэртится, возможно, в результате окисления кобальта из двухвалентного состояния до трехвалентного или адсорбции углекислоты или воды, ибо кобальтовый катализатор чувствителен к влаге. Фракцию, состоящую из частиц более 3 мм, подавали на другой ряд сит 13, где вращающиеся валки продавливали их через сито с отверстиями диаметром 3 мм. Пыль и мелочь, полученные на этом сите, возвращаются в смеситель. Частицы величиной [c.116]

    Установка УКОС предназначена для очистки буровых сточных вод коагуляцией и напорной флотацией. Буровые сточные воды после отстоя от крупных взвешенных частиц в амбаре-усреднителе насосом перекачивают в смеситель, в который до-заторным насосом подается 10%-ный водный раствор коагулянта — сернокислого алюминия. Одновременно в верхнюю часть смесителя самотеком поступает нейтрализатор — известковое молоко. После интенсивного перемешивания смесь поступает в водоворотну ю камеру, где образуются, укрупняются и оседают коагулированные хлопья. Более мелкие примеси всплывают и удаляются скребковым механизмом в карман для пены. Из коагулятора предварительно очищенная вода поступает в двухкамерный флотатор, куда ири помощи пасосноэжекторной обвязки и напорного бака подают в течение I мни водовоздушную смесь. Образовавшиеся при этом осадок и пену наиравляют в бак ир ема осадка, откуда давлением воздуха они передавливаются в отстойник осадка, где он обезвоживается до 95%. Отстой можно использовать для приготовления промывочной укидкости. Очищенная вода из кармана флотатора поступает в сборник для повторного использования. [c.200]

    Из системы пневмотранспорта технический углерод улавливается циклонами 17, а воздух доочи-щается от остатков частиц углерода в рукавном фильтре 18. Из фильтра очищенный воздух выбрасывается в атмосферу вентилятором 19, а технический углерод из аппаратов 17 и 18 через шлюзовые затворы шнековыми транспортерами подается в бункер-уплотнитель 20, где освобождается от воздуха и уплотняется. Из аппарата 20 через шлюзовый затвор технический углерод поступает в один из двух смесителей-грануляторов 21, куда одновременно подается вода или связующий раствор, подготовленный в смесителе 22. В смеситель направляют также подогретую воду и связующее из приемника с помощью дозирующего насоса. [c.110]

    В периоде / преобладает процесс смешивания за счет конвективного переноса компонентов по внутреннему объему смесителя. Процесс сегрегации по сравнению с процессом смешивания идет с небольшой скоростью, В связи с этим в периоде / У резко уменьшается до некоторого значения У,,,,. К концу этого периода ( ,,) в рабочем объеме смесителя практически нет агрегатов (макрообъемов), состоящих из частиц одного компонента. [c.229]

    Рабочий орган смесителя выполнен в виде двух лопастных мешалок (верхней 3 и нижней 4), насаженных на одни консольно расположенный вал. Форма мешалок зависит от заданной степени измельчения частиц сыпучего материала. Если измельчение частиц недопустимо, то рекомендуют использовать мешалки, конструкция которых иоказана на рнс. 8.5 (а — верхняя, б — нижняя). Для смесей, которые допускают изменение гранулометрического состава в процессе смсшнваппя, устанавливают мешалки, показанные на рис. 8.6 (а — верхняя, б — нижняя). [c.236]

    Оптимизация циркуляционных емееителей. При выборе оптимальных конструктивных размеров смесителя и его режима работы используют в основном метод физического моделирования. Число вариантов исполнения лабораторной модели объемом 5—6 л обычно небольшое от 2 до 5. Режимные и конструктивные параметры лабораторных смесителей из-за трудоемкости и высокой стоимости их изготовления и проведения экспериментов, как правило, изменяют в узких диапазонах. В моделях смесителей малого объема влияние пристеночных эффектов на гидродинамику потока частиц внутри смесителя велико. В промышленных смесителях эти эффекты в значительной мере ослаблены. Это усложняет поиск масштабных переходов от лабораторной модели к промышленному образцу смесителя. По этим причинам метод физического моделирования смесителей сыпучих материалов при разработке методики их оптимизации неэффективен. [c.238]

    Смеситель работает следующим образом. Подлежащие смешиванию сыпучие компоненты из питателей через штуцера 1 поступают внутрь смесителя, где попадают в первый вращающийся конус 2. Под действием центробежных сил инерцик частицы материала поднимаются по конусу и затем сбрасываются в виде пылевидного факела на воронку 4. После удара частиц о поверхность воронки они сползают внутрь следующего вращающегося конуса, где процЛс повторяется. Смешивание компонентов происходит на конусах, в факеле и на внутренних поверхностях воронок. [c.250]

    Формование микросферического алюмосиликатного катализатора проводят, распыляя смесь гелеобразующих растворов с помощью смесителя-распылителя 6 (рис. 5). Давление воздуха на распыление не должно превышать 1 ат при сильном распыленип образуется больше частиц размером до 100 мк прп слабом — преимущественно получаются крупные частицы размером 700 мк и более. Температура гелеобразующпх растворов колеблется в пределах 10 — 12° С, температура формовочного масла и формовочной воды — от 25 до 30° С. Время коагуляции золя 7—8 сек, величина pH в пределах 7,8—8,2. [c.48]

    Процесс формования основан на принципе введения отдельных капель золя в минеральное масло, где они в течение нескольких секунд коагулируют, образуя гель. При этом вследствие поверхностного натяжения на границе фаз золь — масло частицы гидрогеля принимают сферическую форму. Формование микросферического силикагеля проводят путем распыления золя с помощью смесителя-распылителя. Давление воздуха на распыление колеблется в пределах 0,8—1.0 ат. Формовочное масло представляет собой смесь трансформаторного масла (3 вес. ч) и осветительного керосина (2 вес. ч.) и имеет плотность 0,8598—0,8612 г/с.ад . Температура формовочного масла 22—25° С. Формование крупношарикового силикагеля осуществляют с помощью смесителя инжекторного тина и распределительного конуса прн 18—20° С в среду непрерывно циркули- [c.116]

    Даны физическая модель и математическое описание процесса нанесения слоя вспомогательного вещества на цилиндрическую поверхность фильтровального патрона с учетом геометрических характеристик фильтра, свойств вспомогательного вещества, скорости процесса концентрации суспензии [388]. Приняты следующие допущения нанесение слоя происходит в замкнутой циркуляционной системе фильтр — смеситель вспомогательное вещество несжимаемо в системе осуществляется идеальное перемешивание основной слой наносится на имеющийся топкий слой вспомогательного вещества. При анализе введено понятие вероятности проникания частиц с жидкой фазой через ранее нанесенный слой вспомогательного вещества единичной толщины. Получены уравнения, позволяющие определить продолжительность иансссиия слоя вспомогательного вещества при постоянпглх производительности насоса или разности давлений с разбиением области интегрирования на равные участки. [c.361]

    За рубежом имеется установка такого типа для получения твердого парафина. Процесс проводят в аппаратах колонного типа, в верхнюю часть которых через форсунки вводят расплавленный гач. Мельчайшие частицы парафина затвердевают в результате контакта с восходящим потоком воздуха. Масло, находящееся на поверхности частиц парафина, удаляется при помощи растворителя в системе противоточных смесителей и отстойников. Метод позволяет получить твердый парафин с содержанием масла не более 0,5% (масс.). К недостаткам данного процесса следует отнести значительные эксплуатационные затраты, связанные с грануляцией сырья в токе охлажденного воздуха, необходимостью получения гранул строго определенных формы и размера, поскольку чем больше размер получаемых гранул, тем хуже отмывается содержащееся в них масло. Для увеличения проницаемости осадка на фильтре к сырью добавляют инертный несжимаемый материал определенной степени грануляции. В качестве добавок предложны различные глины, бумажная пульпа, ламповая сажа, силикат и др. [85]. Для улучшения фильтрования и частичного предохранения фильтровальной ткани от забивки применяют фильтрующие добавки —газонаполненные микробаллончики из инертных по отношению к [c.164]

    Рассмотренные модели массовых процессов коалесценции и дробления носят относительно частный характер. Более полная модель указанного взаимодействия включений дисперсной фазы для проточного аппарата может быть построена следующим образом. Выберем в качестве внутренних координат ансамбля включений дисперсной среды массу и время пребывания частицы в проточном реакторе-смесителе предположим, что механизм взаимодействия частиц (т. е. интенсивность их дробления и коалесценции) в основном определяется их массой будем считать возраст частиц, образующихся при дроблении, равным возрасту частиц-нрародителей, а возраст частиц, образующихся при коалесценции, — среднему арифметическому от возраста частиц-пра-родителей. В этих предположениях математическое описание процессов дробления и коалесценции в проточном смесителе с учетом распределения частиц по массам и времени пребывания представляется уравнением БСА в виде [c.76]


Смотреть страницы где упоминается термин Смесители частиц: [c.198]    [c.198]    [c.62]    [c.231]    [c.232]    [c.232]    [c.244]    [c.11]    [c.246]    [c.436]    [c.231]    [c.232]   
Массопередача (1982) -- [ c.251 ]




ПОИСК







© 2025 chem21.info Реклама на сайте