Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклон Схемы

Рис. 7й. Схема устройства регенератора с двухступенчатыми циклонами. Рис. 7й. <a href="/info/329541">Схема устройства</a> регенератора с двухступенчатыми циклонами.

Рис. 83. Схема батарейного циклона для улавливания пыли (я) и элемент Рис. 83. Схема <a href="/info/95072">батарейного циклона</a> для <a href="/info/515319">улавливания пыли</a> (я) и элемент
Рис. 79. Схема регенератора (вертикальный разрез) с трехступенчатыми циклонами. Рис. 79. <a href="/info/844272">Схема регенератора</a> (<a href="/info/1358671">вертикальный разрез</a>) с трехступенчатыми циклонами.
    Схема движения катализатора, потоков сырья и воздуха на крекинг-установке флюид показана на фиг. 48. Регенерированный горячий катализатор из регенератора 1 самотеком спускается по стояку 2 в узел смешения 3, где он приходит в контакт с предварительно подогретым в змеевиках печи 19 дестиллатным сырьем. При контактировании с горячим катализатором сырье испаряется. Дальше смесь по трубопроводу 4 поступает в реактор 5. Скорость потока в реакторе резко уменьшается, вследствие чего основная масса твердых частиц катализатора осаждается в кипящем плотном слое 6. Высоту уровня плотного слоя устанавливают такой, чтобы обеспечить требуемое время пребывания в нем паров и желаемую глубину их крекинга в присутствии катализатора. Выходящий из плотного слоя газо-паровой поток продуктов крекинга проходит верхнюю часть 7 реактора и расположенные внутри его циклонные сепараторы 8. Значительная часть уносимых частиц катализатора осаждается в верхней половине реактора до поступления потока в циклонные сепараторы. Циклоны служат для более полного отделения частиц и возврата их по трубам 9 иод уровень кипящего слоя в реакторе. Чем ниже скорость потока в верхней части реактора и больше высота этой части, тем полнее газо-паровой [c.123]

Рис. IX-68. Схема циклонной камеры сгорания. Рис. IX-68. <a href="/info/330059">Схема циклонной</a> камеры сгорания.

Рис. 77 Схема располон ения трехступенчатых циклонов в регенераторе. Рис. 77 Схема располон ения трехступенчатых циклонов в регенераторе.
Рис. 89. Схема двухступенчатого циклонного агрегата Рис. 89. <a href="/info/125853">Схема двухступенчатого</a> циклонного агрегата
    Аппараты для очистки, конструируемые на основе действия центробежной силы, носят название циклонов. Схема действия циклона изображена на рис. 93. Газовый поток, входя в аппарат тангенциально со скоростью от 12 до 40 м/сек, приобретает вращение вокруг оси центральной выходной трубы. Ча- [c.183]

    Газы, выходящие из реакционной печи через упомянутый выше циклон 8, снабженный охлаждающей водяной рубашкой, поступают в чугунный оросительный холодильник 9 температура газа на входе в холодильник около 300", на выходе 30°. Отсюда для улавливания хлористого водорода газ поступает на абсорбционную установку 10, состоящую из шести стеклянных колонн, заполненных кольцами Рашига. На схеме показана лишь одна стеклянная абсорбционная колонна. Количество воды, орошающей абсорберы, подбирают так, чтобы в результате абсорбции получать соляную кислоту крепостью около 33% (удельный вес 1,160—1,165), которую сифоном переводят в сборник 11. [c.173]

    Автоматическое прекращение работы установки. В ряде случаев специфика производства требует немедленного прекращения работы всей технологической схемы при возникновении взрыва в одном из аппаратов. Это обычно позволяет предотвратить еще более серьезные аварийные ситуации. Автоматическое прекращение работы технологической линии или отдельного аппарата достигается специальными устройствами, срабатывающими от индикатора взрыва это в некоторых случаях дает возможность выявить причину возникновения взрыва в технологическом оборудовании. Как правило, автоматическое прекращение работы установки применяется в различных вариантах с другими активными методами взрывозащиты. Например, в схеме взрывозащиты установки для измельчения пиритов наряду с защитой циклона предохранительными мембранами, срабатывающими от детонаторов, предусмотрена ее автоматическая остановка. Кроме того, пламя, возникающее в любом месте этой установки, гасится флегматизирующим веществом из быстродействующего огнетушителя, размещенного у входного отверстия вентилятора. При этом тушащее вещество эффективно циркулирует в системе до полной остановки вентиля- [c.178]

    На рис. XII-1 показана схема получения размолотой серы, в которой произошел взрыв. Комковая сера подвергалась размолу в среде инертного газа в роликовой мельнице 4 типа Раймонд . Молотая сера из сепаратора 3 потоком газа выносилась в циклон 7, в котором большая ее часть осаждалась, и через шлюзовый затвор поступала в бункер готовой продукции 6. Инертный газ с неосажденной молотой серой вентилятором I вновь подается в мельницу. Улов- [c.265]

    На фиг. 50 изображена схема одного пз батарейных циклонов, включаюш его ряд элементов, называемых -малыми циклонами, где собственно п происходят улавливание пыли и очистка газа. [c.128]

    Наиболее мелкие пылеобразные частицы катализатора в значительной степени выносятся из системы потоком дымовых газов, подаваемых в пневмоподъемники. Удаление оставшейся мелочи и более крупных частиц производится при помощи отвеивателя и циклонного сепаратора (фиг. 58). Как видно из приведенной схемы, принцип работы отвеивателя состоит в следующем. В спускаю- [c.139]

    В нижней части реактора 2 установлена горизонтальная двухступенчатая циклонная топка /. Под реактора имеет шлаковую летку. В верхней части реактора расположен коллектор, 3 с форсунками для исходного раствора, подаваемого насосом 4 из емкости 5. По высоте реактора имеется три зоны /// — испарения, II — нагрева сухой соли и / — плавления. Окисление органики происходит, в основном, в зоне I. Противоток повышает интенсивность тепло- и массообменных процессов и обеспечивает рекуперацию тепла отходящих дымовых газов. Указанная схема, по сути дела, является вариантом скрубберной схемы, а реактор — полым скруббером со встроенной топкой, что дает возможность получить [c.106]

    Для упрощения схемы число циклонов на рис. 92 и 96 уменьшено [c.189]

    Катализатор улавливается восемью двухступенчатыми циклонами, расположенными в реакторе, и двадцатью трехступеичатыми циклонами, находящимися в регенераторе таким образом, всего в системе 76 циклонов. Схема погоноразделения близка к описанной ранее. Остаток, выходящий с низа колонны и содержащий взвесь катализатора, поступает в отстойник катализатора 10 осветленное масло выводят с установки, а сконцентрированный шлам возвращают в реактор. [c.205]


    Частицы кокса-теплоносителя с отложившимся на них тонким слоем образовавшегося в процессе кокса (балансового кокса) опускаются в низ отпарной секции реактора, при этом они продуваются встречным потоком водяного пара. Далее они перемещаются по изогнутому трубопроводу 8 (пневмотранспорт) в коксонагреватель 5. С помощью воздуходувки 1 под распределительную решетку 6 коксонагревателя подается воздух в объеме, необходимом для нагрева циркулирующего кокса до заданной температуры. Кокс нагревается за счет теплоты сгорания части балансового кокса. Продукты сгорания (дымовые газы) проходят двухступенчатые циклоны 4, где от них отделяются мелкие частицы кокса, и поступают в паровой котел-утилизатор (на схеме не показан). [c.31]

    Катализатор, пройдя зону отпаривания водяным паром, по транспортной линии 5 поступает в регенератор 6 с псевдоожиженным слоем катализатора, куда одновременно воздуходувкой 3 через горизонтальный распределитель подается воздух, необходимый для регенерации катализатора. Регенерированный катализатор по трубопроводу 7 опускается в узел смешения с сырьем. Пары продуктов крекинга и газы регенерации отделяются от катализаторной пыли в соответствующих двухступенчатых циклонах и объединяются в сборных камерах, расположенных в верхней части аппаратов 6 и 10. Газы регенерации проходят паровой котел-утилизатор 9, где их тепло используется для выработки водяного пара. Затем они очищаются от остатков пыли в электрофильтре 8 и выводятся в атмосферу через дымовую трубу (на схеме не показана). [c.38]

    Отделение зерен от выходящих из реактора и регенератора газов осуществляется в циклонах. За реактором расположена система разделения и очистки продуктов (на схеме не показана). [c.388]

    Пневмотранспортные сушильные аппараты рекомендуются для сушки зернистых материалов с размером частиц от 1 до 10 мм. Схема такой сушилки со вспомогательным оборудованием приведена на рис. 10.4. Влажный материал питателем 1 подается в трубу 2. Воздух через калорифер 6 (или топочные газы) нагнетается вентилятором 5 в нижнюю часть трубы и со скоростью, превышающей скорость витания крупных частиц, подхватывает материал и транспортирует его. В процессе транспортировки происходит интенсивная сушка материала. Далее газы и высушенный материал поступают в циклон-пылеотделитель 3, где продукт улавливается, а очищенные в рукавном фильтре 4 газы выбрасываются в атмосферу. Диаметр трубы сушилки обычно не превышает 1,0 м, длина — 25 м, а максимальная скорость газа в трубе не выше 40 м/с. Габариты трубы сушилки определяются по вре- [c.300]

    Схема одноступенчатого циклона изображена на рис. 15. Циклон состоит из корпуса, входного и выпускного патрубков, направляющих перегородок, стояка — спускной трубы циклона. Чтобы поток газовзвеси в циклон не миновал его сепарирующую часть, на нижнем конце стояков циклонов устанавливаются различные устройства. [c.36]

    Схема регенератора крекинг-установок приведена на рис. 14. Основными внутренними узлами регенератора являются корпус 1, циклонные устройства 7, вертикальные цилиндрические 2 и радиальные 3 перегородки, секционирующие зону выжига кокса, коллекторы подвода воздуха в зону регенерации катализатора 4, система ввода водяного пара под днище сборной камеры 8 и в циклоны первой ступени 7 для предотвращения догорания окиси углерода в двуокись. В отдельных случаях для съема избыточного тепла и упорядочения движения потока газовзвеси в зоне регенерации устанавливаются пароводяные змеевики. [c.41]

    На фиг. 8 приведена схема установки каталитического крекинга с пылевидным катализатором (модель IV), в которую внесены последние усовершенствования по ведению процесса. На установке изменена система циркуляции (отсутствуют напорные стояки), для улавливания катализатора внутри реактора и регенератора смонтированы двухступенчатые циклоны,- Для уменьшения абразивного износа применены катализаторопроводы без резких поворотов, а для более полного улавливания катализатора—реконструированы циклоны. Диаметры реактора и регенератора уменьшены и, соответственно, скорости паров и газов [c.52]

    При наличии открытых топок для каждой сушильной установки разрабатываются правила эксплуатации сушильных устройств применительно к данным условиям, В барабанных сушилках предусматривается автоматическое прекрапхение подачи сырого продукта при остановке вращаюнтегося барабат/а. При изменении количества подаваемого на сушку продукта и его влажности тепловой режим сушильного барабана может легко меняться, что нарушит технологический процесс. На рис, 23 показана схема автоматического регулирования температуры сушильного барабана. Продукт поступает в сушильный барабан 3 по течке 8 и выходит с его противоположного конца. Образующиеся пары и пыль дымососом / удаляются через циклон 2, где пыль осаждается. Регулирование режима осуществляется системой автоматических устройств. [c.100]

    Рпс. 68. Схема устройства циклона  [c.154]

    Принципиальная схема данной установки следующая. Сырье подается в нижнюю часть стояка, по которому катализатор поступает из регенератора в реактор. Встречая горячий катализатор, сырье испаряется и вместе с увлеченным катализа-торой поступает в реактор. Определенный уровень катализатора в реакторе поддерживается с помощью особой секции, встроенной в реактор. Отведенный через эту секцию отработанный катализатор поступает в наружную отпарную колонну. Снизу отпарной секции катализатор по отводящей трубе перетекает в регенератор. Регенерированный катализатор отводится снизу регенератора в стояк, по которому вновь поступает в реактор. Пары нефтепродуктов из реактора направляются в ректификацион <ую колонну через циклонный сепаратор. Отделенный в сепараторе катализатор возвращается в нижнюю часть реактора. [c.52]

    Очистку отходящих газов сушильного барабана и охладителя ведут в самостоятельной системе, состоящей из циклона — пылеочистки и двух абсорберов, включенных последовательно— улавливание аммиака и фтора. Схема предусматривает замкнутый цикл оборота воды с минимальны.ми выбросами газов, содержащих ННз и р2 в ат.мосферу. [c.244]

    Отделение мелочи от частиц катализатора приемлемого размера производится в отвеивателе (классификаторе), а улавливание ее — в циклонах. Схемы отвеиватслей двух конструкций показаны [c.45]

    Схема установки сжигания нефтяного шлама в смеси с активным илом приведена на рис. 42. Предварительно подготовленную смесь сжигают в вертикальной цилиндрической печи, оборудованной тремя ротационными форсунками. Воздуходувкой на форсунки подают воздух. Рабочая температура в печи 900—1200 °С. Температура уходящих дымовых газов 650—-700 °С, для ее поддержания в печи предусмотрено водяное орошение дымовых газов через форсунки тонкого распыла. Дымовые газы поступают в пылеосадительную камеру, где частично улавливаются зола и иыль. Очищенные газы нодают в котел-утилизатор, где за счет тепла дымовых газов вырабатывается водяно пар. Отдав тепло, дымовые газы окончательно очищаются в батарейных циклонах, и через трубу их выбрасывают в атмосферу. Через специальное устройство в нижней части печи раз в смену выгружают золу. По мере иакоиления золу удаляют также из пылеосадительной камеры и циклонов в контейнеры, установленные на тележках. [c.117]

    В настоящее время наиболее рациональной из известных конструкций является концентратор Даниельса — Парксона, в котором вскипание латекса происходит непосредственно в теплообменнике, а паро-латексная смесь поступает на разделение в циклон. Схема процесса концентрирования латекса с применением [c.494]

    Принпипиальная технологическая схема печной активной сажи представлена на рис.7. И. Основной аппарат процесса — циклонный реактор, в котором осуществляются следующие три процесса  [c.72]

    Нагрев кокса до заданной температуры (600-620 С) осуществляется в кок — сонаг1 евателе 3 за счет теплоты сгорания части кокса. Дымовые газы, покидающие псевдоожиженный слой, проходят двухступенчатые циклоны, где от нкк отделяется и возвращается в слой коксовая пыль, затем поступают в котел-утилизатор (на схеме не показан). Поскольку количество сжигаемого кокса меньше вновь образуемого, то избыток его в виде фракции более крупных частиц непрерывно выводят из системы через сепаратор-холодильник 4, где менее крупные частицы возвращаются в коксонагреватель. [c.77]

    Технологическая схема секций кре — кинга и ректификации установки Г —43 — 1( 7 представлена на рис.8.9. Гидроочи — щенное сырье после предварительного подогрева в теплообменниках и печи П смешивается с рециркулятом и водяным mipoM и вводится в узел смешения прямо — точного лифт —реактора Р—1 (рис. 8.10). Контактируя с регенерированным горячим цеолитсодержащим катализатором, сырье испаряется, подвергается катализу в лифт —реакторе и далее поступает в зону форсированного кипящего слоя Р — 1. Про — дукты реакции отделяются от катализа — тс.рной пыли в двухступенчатых циклонах и аоступают в нижнюю часть ректифика — ц)[онной колонны К—1 на разделение. [c.134]

Рис. 95 Схема конвертора модели А установки ортофлоу —реактор. —регенератор. 3—циклоны отпарвая секции 5 —вводной натруОок циклона в — решетка 7—колодец Рис. 95 <a href="/info/1444003">Схема конвертора</a> модели А <a href="/info/66338">установки ортофлоу</a> —реактор. —регенератор. 3—циклоны отпарвая секции 5 —вводной натруОок циклона в — решетка 7—колодец
    На заводе пластических масс произошел взрыв пылевоздушной смеси полистирола в бункере циклона от искрового разряда статического электричества. Вследствие детонации последовал второй, более мощный взрыв в сушильной и вентиляционной камерах. Для предупреждения подобных аварий в производстве полистирола циклоны с бункерами вынесли из помещения на отрытую площадку предусмотрели схему, разбавления взрывоопасных пылевоздушных смесей в аппаратуре инертным газом пересмотрели классификацию помещений полистирола с учетом взрывоопасности производства по пыли. После пересмотра категории взрывоопасности производства были проведены и другие мероприятия усовершенствована конструкция сушилок, циклонов, герметизиро- [c.156]

    Анализ показывает, что большинство аварий, связанных со взрывами пыли, начиналось с -незначительных местных хлопков и локальных взрывов внутри оборудования и аппаратуры. При разрыве элементов оборудования образуются газовые ударные волны которые поднимают большую массу Накопившейся пыли на других участках оборудования и здания. Поэтому следует принимать меры по улучшению технологии и повышению надежности оборудования. Для предупреждения пылеобразования уеловно можно принять следующую схему исходное сырье транспортом направляется на склад и выгружается на открытую площадку или в бункера склада механизированным способом из бункеров питателями подается в мельницы из мельниц продукты пневмотранспортом через сепарационные устройства направляются в топки котлов, сушильные агрегаты, бункера и циклоны из сушильных агрегатов высушенные продукты пневмотранспортом через систему сепарации направляются на дальнейшую переработку из сушильных агрегатов, осадительных камер, бункеров, промежуточ- ных емкостей, механизмов выгрузки и загрузки сырья и продуктов пылевоздушная смесь отсасывается вентиляторами и направляется в систему пылеочистки (циклоны, фильтры и т. д.), а затем выбрасывается в атмосферу.  [c.283]

Фиг. 32. Схема циклонного се- Фиг. 33. Схема 5 бункера-подогрева-паратора. теля. Фиг. 32. <a href="/info/330059">Схема циклонного</a> се- Фиг. 33. Схема 5 бункера-подогрева-паратора. теля.
    На рис. 76 показано устройство одного из регенераторов с обслуживающими его двухступенчатыми циклонами, а на рис. 77 схема регенератора с двенадцатью трехступен-чатыми циклонами [173, 174], [c.155]

    В регенераторе условно различают четыре зоны распределения потока газовзвеси по сечению регенератора выжига кокса в псевдоожиженном слое отстойная зона улавливания катализаторной пыли в одно-, двух- или трехступенчатых циклонных сепараторах. Для рег> лирования температуры в регенераторе могу т устанавливаться внутренние змеевики пароводяного охлаждения или выносные котлы-утклизаторы (холодильники катализатора). На рис. 14 представлена конструктивная схема регенератора с кипящт1м стаем катализатора установки Г43-107. [c.29]

Рис. 151. Схема устанойми циклонной группы на монтажные опоры I — опора Рис. 151. Схема устанойми <a href="/info/1092119">циклонной группы</a> на монтажные опоры I — опора
    Детальный расчет реактора для получения фталевого ангидрида приводят Беранек, Сокол и Винтерштейн исходные данные несколько отличаются от приводимых фирмой Sherwin—Wiliams. Псевдоожиженный слой нашел самое широкое применение на установках каталитического крекинга широкой фракции. Схема такой установки приведена на рис. IV-47 . Установка состоит из двух основных частей — реактора и регенератора. Разложение тяжелых углеводородов на более легкие происходит в реакторе, работающем на алюмо-кремниевом катализаторе диаметром зерен 20—100 мкм. Поток, поднимающий частицы катализатора, создается углеводородными парами, вдуваемыми снизу. Прореагировавшие углеводородные иары проходят через циклоны, отделяющие унесенную пыль и возвращающие ее в реактор. В процессе крекинга катализатор покрывается пленкой кокса. Для восстановления его направляют в регенератор по V-образной трубе. Перед входом в регенератор в трубу вводится воздух на этом участке смесь катализатора с воздухом обладает меньшей плотностью, чем в колене, выходящем из реактора. Вследствие этой разности плотностей катализатор движется по У-образной трубе. В регенераторе пленка кокса выжигается, после чего частицы катализатора возвращаются в реактор по другой V-образной трубе. Каталитический крекинг происходит при температуре 460—510°С и небольшом давлении, не превышающем 1,8 ат. [c.358]

    Первые установки каталитического крекинга с псевдоожиженным слоем катализатора были спроектированы с верхним выводом катализатора. По этой схеме (фиг. 4) вся псевдоожи-женыая масса катализатора, поступающая в реактор, отводится через верх реактора в аппаратуру для отделения пыли и паров (трехступенчатые циклонные сепараторы), а затем по- [c.45]

    Схема производства диам.мофоса предусматривает поглощение НР из отходящих газов в скруббере, орошаемом фосфорной кислотой. От пыли газы очищаются в циклонах. [c.244]

    На рис. 65, б приведен вариант схемы сжигания с использованием циклонной топки и получением плава солей. Основное оборудование реактор с циклонной топкой 10, сушилка 9, скруббер 3. Исходные стоки из емкости I насосом 2 поступают в скруббер, где частично упариваются в контакте с дымовыми газами, выходящими из сушилки. Предварительно упаренные стоки из емкости 7 насосом 6 подаются в сушилку. Сухой продукт из нижней части сушилки турбоэксгаустером II подается в циклонную топку, в которой происходит его плавление. Плав солей отводится из установки, а продукты сгорания, пройдя сушилку, циклон 8, дымососом 4, подаются в скруббер. Схема освоена в промышленном масштабе на Тамбовском анилинокрасочном заводе (ныне производственное объединение Пигмент ). [c.104]


Смотреть страницы где упоминается термин Циклон Схемы: [c.129]    [c.130]    [c.61]    [c.488]    [c.239]    [c.245]   
Машиностроение энциклопедия Раздел IV Расчет и конструирование машин ТомIV-12 Машины и аппараты химических и нефтехимических производств (2004) -- [ c.289 , c.290 , c.291 ]




ПОИСК





Смотрите так же термины и статьи:

Схема установки циклонов и электрофильтров к вращающимся печам в производстве огнеупоров

Циклон

Циклон схема потоков

Циклонные толки схема воспламенения



© 2025 chem21.info Реклама на сайте