Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Порядок реакции дробный, уравнения

    Порядок реакции определяют по виду кинетического уравнения реакции. Он равен сумме показателей степеней концентраций в этом уравнении. Например, если кинетическое уравнение реакции представлено выражением (IV.3), то порядок этой реакции равен т- -п. По этому признаку реакции разделяются иа реакции первого, второго и третьего порядка. Реакции более высоких порядков отсутствуют. Известны также реакции нулевого и дробного порядков. [c.115]


    Порядок реакции. Порядок химической реакции определяется по более формальному признаку, чем ее молекулярность,— по виду уравнения, выражающего зависимость скорости реакций от концентраций реагирующих веществ. Порядок реакции равен сумме показателей степеней концентраций в уравнении, выражающем зависимость скорости реакции от концентраций реагирующих веществ. Реакции разделяются на реакции первого порядка, второго порядка, третьего порядка (реакции более высоких порядков не встречаются). Кроме того, известны так называемые реакции нулевого порядка и некоторые реакции, порядок которых выражается дробным числом. [c.467]

    Механизм мономолекулярных реакций. В элементарном акте мономолекулярной реакции участвует всего одна молекула. В соответствии с теорией столкновений реакция начинается со встречи двух активных молекул. Количество столкновений пропорционально квадрату концентрации. Поэтому, казалось бы, что мономолекулярные реакции, как и бимолекулярные, должны иметь порядок, равный двум. Но многие мономолекулярные реакции описываются уравнением первого порядка, причем порядок реакции может изменяться при изменении концентрации (давления) и быть дробным. [c.243]

    Это цепной процесс, на что указывает высокий квантовый выход, а также дробный порядок реакции. Кинетическое уравнение нетрудно получить из следующей схемы  [c.311]

    Давление, промежуточное по сравнению со значениями, рассмотренными выше [т. е. когда нельзя пренебречь величиной р в знаменателе уравнения (120)]. Здесь наблюдается дробный порядок реакции. Скорость реакции записывается в следующем виде  [c.190]

    На основании полученных данных (рис. И и 12) авторы пришли к выводу, что в присутствии субсульфида никеля реакция гидрирования тиофена приблизительно описывается уравнением первого порядка в присутствии смеси сульфида и окисла молибдена порядок реакции дробный (в пределах 0,2—0,6), причем с повышением температуры или уменьшением концентрации тиофена в исходных растворах он увеличивается в присутствии двусернистого молибдена при 200° порядок реакции нулевой. [c.58]

    Гидрирование этилена на никелевом катализаторе может быть описано уравнением первого порядка (по водороду)и нулевого (по этилену) в присутствии катализаторов другого типа порядок реакции второй или дробный по этилену. [c.240]


    Показатель степени п,- в кинетическом уравнении называется порядком реакции по соответствующему компоненту I. Значения п,- зависят от природы реагирующих веществ и в течение всего процесса остаются постоянными. Сумма порядков реакции по компонентам называется кинетическим порядком реакции пр = 2] /) Порядок реакции может принимать любые положительные значения в интервале от нуля до трех (в том числе и дробные) О Пр 3. [c.113]

    Как видно, порядок такой реакции получается дробным, равным 1/ (где п>1). Такой дробный порядок является кажущимся. Истинный порядок реакции, протекающей на поверхности катализатора, является первым. Кажущийся порядок получаем потому, что в кинетическое уравнение, согласно принятому нами методу расчета, вводим величины, характеризующие изменение концентрации вещества не непосредственно на поверхности, а в объеме. В наше выражение входит не поверхностная концентрация, которая характеризуется величиной 9, а величина, характеризующая содержание реагирующего вещества в объеме — его парциальное давление р. Поверхностная концентрация, которая пропорциональна величине 0, входит в уравнение кинетики (ХП,81) в первой степени и, следовательно, истинный порядок реакции — первый. Примером реакции с дробным кажущимся порядком является реакция распада аммиака на мышьяке. [c.319]

    Существуют реакции нулевого порядка (например, разложение некоторых соединений на поверхности различных веществ, когда скорость распада вещества не зависит от их концентрации в объеме) и реакции дробного порядка (например, при многостадийных процессах, если самые медленные стадии имеют разный порядок, а скорости их соизмеримы). Разумеется, ни нулевой, ни дробной молеку-лярности быть не может, так как она относится к механизму реакции, а не к описывающему ее уравнению. [c.107]

    Порядок реакции. Сумма 1,щ п называется общиМ порядком реакции. Показатели степеней П1, в которые возводятся концентрации реагирующих веществ в дифференциальном уравнении скорости реакции, определяют порядок реакции по г-му реагенту. В простых реакциях, протекающих в одну стадию, г — целое, положительное число, равное 1, 2, редко 3. В сложных химических процессах П1 могут быть равны О, иметь как целочисленные, так и дробные, положительные и отрицательные значения. [c.527]

    Из уравнения следует, что в зависимости от соотношения адсорбционных коэффициентов и парциальных давлений исходного сырья и продуктов реакции порядок реакции по концентрации исходного вещества в газовой фазе может быть нулевым, дробным и первым В работе [48] показано, что порядок реакции изменяется от нулевого к дробному и первому при повышении температуры крекинга кумола на цеолитсодержащих катализаторах с различным содержанием кристаллической фазы. В интервале 315—360 °С авторы наблюдали нулевой порядок реакции по концентрации кумола в газовой фазе. Это реализуется при высоких значениях адсорбционного коэффициента исходного сырья, когда в знаменателе последнего уравнения + р и о>1- Ско- [c.106]

    Порядок реакции не обязательно совпадает с ее молекуляр-ностью. Действительно, как показано экспериментально, на практике реакция может иметь дробный порядок. Например, скорость реакции может быть задана уравнением  [c.100]

    Реакции бывают первого, второго, третьего и дробного порядков. Имеются также реакции, у которых скорость процесса не зависит от концентраций реагирующих веществ (реакции нулевого порядка). Порядок реакции определяют опытным путем. Для вычисления констант скоростей реакций первого, второго и третьего порядков дифференциальные уравнения (IV.2) — (1У.6) интегрируют. Для реакций первого порядка [c.106]

    Опыт показывает, что большинство реакций протекает по вто рому порядку, реже наблюдается третий порядок и лишь несколь ко десятков реакций описывается уравнением первого порядка Порядок мож-ет быть дробным, отрицательным и даже нулевым [c.239]

    Как видно из уравнения (1), скорость реакции пропорциональна концентрациям реагентов в степени, равной их стехиометрическим коэффициентам. Сумма показателей степени при концентрациях реагентов в уравнении (1), равная общему числу молекул, вступающих в соединение, называется порядком реакции. В данном случае он равен т + п. Следует заметить, что очень часто наблюдаемый порядок реакции отличается от суммы стехиометрических коэффициентов в уравнении реакции и может оказаться даже дробным. Объясняется это тем, что уравнение реакции в таких случаях показывает лишь соотношение между исходными и конечными продуктами химического процесса, в то время как в действительности имеет место ряд промежуточных химических превращений, влияние катализаторов и др. [c.9]


    Показатели степени тип называют порядком реакции соответственно по веществам А и В, а сумму (от+я) — порядком реакции. Порядок реакции может быть как целым, так и дробным числом. Реакции, состоящие из повторяющихся одинаковых элементарных химических актов, имеют, как правило, второй порядок реакции, реже — первый, еще реже — третий. Сложность кинетического уравнения (дробный или переменный порядок реакции) указывает на сложность реального механизма реакции, протекающего в действительности по нескольким (или многим) элементарным стадиям. [c.86]

    Параметры (к, ,) в кинетическом уравнении химической реакции определяют расчетным методом при обработке кинетического эксперимента (кинетических кривых расходования реагентов и накопления промежуточных и конечных продуктов). Для простых реакций, когда реакция протекает в одну стадию (элементарный химический процесс), порядок по реагенту совпадает по величине со стехиометрическим коэффициентом при реагенте в уравнении (2.1.1.1). Для сложных реакций порядок реакции по реагенту, как правило, не равен стехиометрическому коэффициенту (и, Ф V,) и может быть целочисленным, дробным или отрицательным. Общий порядок реакции равен сумме показателей степени по всем реагентам п = Уи,. В сложных реакциях, когда химический процесс протекает через ряд промежуточных стадий, уравнение (2.1.1.2) является формальной записью скорости химического процесса, при этом порядок реакции может быть дробным и отрицательным. Если сложная реакция состоит из нескольких последовательных стадий, из которых медленная определяет скорость всего процесса, то порядок суммарной реакции обычно равен порядку этой определяющей скорость реакции. [c.332]

    Порядок реакции (символы — v, а, р, безразмерная величина) — сумма показателей степеней концентрации веществ в уравнении действующих масс. П. р. определяет характер зависимости скорости от концентрации и может иметь нулевое, дробное и целочисленное значения. Если при многостадийном процессе уравнение реакции отражает лишь [c.238]

    Кинетическая функция (11.89) при средних заполнениях поверхности не может быть разбита, как (П.6), на два сомножителя, один из которых зависел бы только от температуры, а другой — только от концентрации. Если же все-таки представить скорость реакции в каком-либо интервале температур и концентраций уравнением типа р = хС", то кажущаяся энергия активации реакции будет находиться в пределах Е — < Е < Е, а порядок реакции — в пределах О Са С 1. Лангмюровская теория адсорбции объясняет, таким образом, распространенность дробных порядков в каталитических реакциях. Кажущаяся энергия активации, как и кажущийся порядок реакции, физичёского смысла не имеют и пригодны лишь для аппроксимации кинетического уравнения в некоторой ограниченной области обе эти величины меняются с изменением температуры и концентрации реагирующего вещества. [c.82]

    Рассмотрение уравнений (1У.40) —(1У.42) приво- дит к заключению, что порядок реакции по веществу у4г изменяется от дробного к первому. [c.82]

    Если порядок химической реакции а отличен от первого, граница диффузионной области с увеличением концентрации вещества в ядре потока сдвигается при а> 1 в сторону меньших, а при а<1—в сторону больших температур. По мере приближения к диффузионной области кажущийся порядок реакции приближается к единице во внешнедиффузионной области Ср 0 и все реакции имеют первый порядок по копцентрации в ядре потока. При дробном порядке химической реакции, а также при лангмюровской кинетике реакции на поверхности (переменный дробный кажущийся порядок в области средних заполнений) переход от кинетической области к внешнедиффузионной осуществляется более резко, чем в рассмотренном случае реакции первого порядка. Приповерхностная концентрация определяется из уравнений баланса, аналогичных (III.17) [c.118]

    Случай 3. Скорости реакций II и III примерно одинаковы дифференциальное уравнение (2) нельзя упростить, причем суммарный порядок реакции дробный (см. уравнение 30, стр. 172). Такая кинетика наблюдалась при альдольной конденсации изомасляного альдегида (Нейл, 1941 г. цитировано по Дьюару). [c.650]

    Здесь а, Ь,. .. означают порядки реакции по соответствующим реагентам они не связаны с коэффициентами суммарного стехиометрического уравнения. В этом случае в зависимости (УПЫО) могут быть использованы концентрации продуктов, а порядок реакции по отдельным реагентам будет целым или дробным числом (отрицательным или положительным). [c.208]

    Метод BaiIT-Гоффа. Этот метод позволяет находить не только целые, но и дробные порядки. Пусть v = k ", где п — порядок реакции. Записав это уравнение для двух концентраций, получим [c.263]

    Порядок реакции определяется кинетическим уравнением реакции и равен сумме показателей степеней при концентрациях в этом уравнении. Реакции могут быть нулевого, первого, второго и третьего (не выше), а также дробного порядка. Дробный порядок в особенности характерен для сложных реакций, протекающих через промежуточные стадии, т. е. имеющих более одного элементарного акта. Нулевой порядок наблюдается в таких гетерогенных реакциях, в которых скорость подвода реагирующего вещества во много раз больше скорости химического взаимодействия. В реакциях нулевого порядка скорость постоянна во времени w — onst. [c.230]

    Молекулярность реакции представляет собой молекулярно-кинетическую характеристику системы, а понятие о порядке реакции следует из формально-кинетического описания. Для простых гомогенных реакций, протекаюших в одну стадию, эти два понятия совпадают, т. е. мономолекулярная реакция соответствует реакции первого порядка, бимолекулярная — реакции второго порядка, три-молекулярная — реакции третьего порядка. Для сложных реакций, протекающих в несколько стадий, формальное представление о порядке не связано с истинной молекулярностью реакций. Поэтому при формально-кинетическом описании таких процессов встречаются реакции дробного, нулевого и даже отрицательного порядка по одному из компонентов. Например, каталитическое разложение аммиака на поверхности вольфрама описывается уравнением и = А (реакция нулевого порядка, скорость которой не зависит от концентрации реагентов), разложение фосфина на стекле протекает в соответствии с уравнением и = йСрн (реакция первого порядка), стибин на твердой сурьме диссоциирует со скоростью ii = /e sbH, (реакция дробного порядка). Окисление оксида углерода, протекающее по уравнению 2С0-Ь02->2С02 на платиновом катализаторе, подчиняется зависимости v = k( o2/ o), т. е. эта реакция имеет порядок [c.216]

    Поскольк процесс взаимодействия релаксаторов является сложным, его Л сствснно описывать уравнением реакции / -го порядка. Если при обычной имической реакции, например, третий порядок наблюдается редко (так как го требует активного соударения сразу трех молекул), то в данном случае глаксаторы конденсированы в образце и элементарный акт процесса их аимодействия может включать сраз несколько релаксаторов (например, тияние нескольких микрополостей в одщ ). При этом порядок реакции моет быть и дробным. Для такого случая действительно кинетическое ур шне-не [c.295]

    Кинетика окисления индивидуальных веществ на различных оксидных катализаторах изучена значительно меньще, чем на АП-56. Поэтому для алюмомеднооксидного и меднохромооксидного катализаторов в табл. 4.5 приведены значения только порядка реакции и энергии активации реакции окисления. Как правило, порядок реакции по углеводороду первый, а по кислороду нулевой либо дробный. Энергии активации процессов колеблются в щироких пределах в зависимости от типа окисляемого вещества (от 63 до 168 кДж/моль). Обычно кинетика глубокого окисления описывается простыми уравнениями, и часто скорость процесса зависит только от концентрации окисляемого вещества (в случае избытка кислорода в реакционной смеси). [c.134]

    Конкуренция разных поверхностных соединений должна быть особенно щелика при больших заполнениях поверхности катализатора, и из представлений Тона и Тейлора следует возможность дробных порядков реакции в этой области, что противоречит другим представлениям. Напротив, если, как указывают авторы, постоянству числа активных центров должен отвечать нулевой порядок реакции, то в области Генри он, казалось бы, должен быть наиболее вероятен но это не согласуется с опытными данными. Отметим также, что если исходить из представлений Тона и Тейлора, то показатели степеней в кинетических уравнениях могут зависеть даже от небольших изменений концентраций компоненгов реакции и покрытий поверхности. [c.261]

    Приведем следующие примеры реакций, для которых действительный и стехиометрический порядки не совпадают. Согласно стехиометриче- скому уравнению 2N2O = 2Ng + С>2> реакция разложения закиси азота NjO должна быть реакцией второго порядка, в то время как в действительности она является реакцией первого порядка (в области высоких давлений). Далее, стехиометрический порядок реакции На -Ь Вга = 2НВг равен 2, действительный же ее порядок равен /3. Заметим, что дробный порядок реакции представляет собой довольно частое явление. Наконец, порядок реакции по какому-либо из участвующих в ней веществ может быть равен нулю или даже отрицателен. Так, например, скорость окисления ацетилена падает с увеличением концентрации кислорода [1534]. Все эти реакции относятся к числу сложных реакций. [c.10]


Смотреть страницы где упоминается термин Порядок реакции дробный, уравнения: [c.78]    [c.16]    [c.396]    [c.106]    [c.434]    [c.140]    [c.451]    [c.183]    [c.87]    [c.104]    [c.8]   
Основы химической кинетики (1964) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Порядок дробный

Порядок реакции

Реакции дробные

Реакции порядок Порядок реакции

Уравнения реакций



© 2025 chem21.info Реклама на сайте