Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерные реакторы применение

    Изотопы находят широкое применение в научных исследованиях, где они используются как меченые атомы для выяснения механизма химических и, в частности, биохимических, процессов. Для этих целей необходимы значительные количества изотопов. Стабильные изотопы получают выделением из природных элементов, а радиоактивные в большинстве случаев с помощью ядерных реакций, которые осуществляются искусственно в результате действия на подходящие элементы нейтронного излучения ядерных реакторов или мощных потоков частиц с высокими энергиями, например дейтронов (ядер дейтерия й), создаваемых ускорителями. Один и тот же изотоп можно получить различными путями. Так, например, для получения радиоактивных изотопов водорода, углерода, фосфора и серы, наиболее широко используемых в практике биологических исследований, осуществляются следующие ядерные реакции  [c.26]


    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Цирконий, обладающий малым сечением захвата тепловых нейтронов, в сочетании с хорошими механическими свойствами является незаменимым материалом для футеровки активных элементов ядерных реакторов. Применение гафния в технике ограничено в силу его сравнительно высокой стоимости. Тем не менее он используется в ядерной технике как эффективный замедлитель нейтронов, так как в противоположность цирконию он обладает очень большим сечением захвата тепловых нейтронов. [c.244]

    Гидрогазификацией называется процесс гидрирования твердого топлива с целью получения газа с высокой теплотой сгорания, который может служить заменителем природного газа. Гидрогазификацию осуществляют в условиях, способствующих максимальному превращению органической части топлива в газообразные легкие углеводороды такими условиями являются высокая температура, в интервале 500—750 С, давление водорода не более 5 МПа и применение катализатора, способствующего максимальному образованию метана. Часть газа гидрогазификации перерабатывают методом конверсии метана (см. с. 73) в синтез-газ и водород водород идет на собственные нужды процесса гидрогазификации. Остальной газ служит высококачественным энергетическим топливом или химическим сырьем. Для осуществления конверсии метана — газа гидрогазификации — предполагается в будущем использовать отбросную теплоту ядерных реакторов с температурой теплоносителя около 900°С. [c.55]


    Проблема энергообеспечения транспорта может быть решена при создании и внедрении высокотемпературных газоохлаждаемых ядерных реакторов. Широкое применение таких реакторов связывают с осуществлением атомно-водородной энергетической концепции, предусматривающей крупномасштабное производство электроэнергии и водорода с использованием последнего в качестве транспортного топлива, а также для других энергетических и сырьевых нужд народного хозяйства. [c.15]

    В этом параграфе рассматривается радиохимический анализ главным образом природных объектов на содержание искусственных радиоактивных изотопов, которые получаются в результате ядерных взрывов, переработки ядерного горючего, работы ядерных реакторов, применения радиоактивных изотопов в промышленности, при научных исследованиях и т. д. [c.262]

    Ядерные излучения нашли своеобразную область применения в форме метода радиоактивационного анализа. В ряде областей новой техники требования к чистоте материалов намного превосходят все пределы прежних требований в этом отношении. Допустимые содержания некоторых примесей оказываются лежащими в пределах 10" —10 % и даже ниже. Таковы требования к важнейшим полупроводниковым материалам ( 55) и жаропрочным сплавам, к материалам, применяемым при сооружении ядерных реакторов. В последнем случае необходим тщательный контроль [c.557]

    Следует подчеркнуть, что применение мембранного разделения для этих целей изначально рассматривалось в качестве альтернативы другим традиционным способам разделения — ректификации, абсорбции, адсорбции. Так, мембранное разделение изотопов урана с получением обогащенного гексафторидом урана ( иРб) потока используется в промышленном масштабе с 40-х годов нашего столетия [35]. Кроме того, этот метод используется для выделения радиоактивных изотопов благородных газов из ретантов заводов по переработке ядерного горючего, из защитной атмосферы ядерных реакторов на быстрых нейтронах и т. д. [99]. [c.314]

    Применение. Из щелочных металлов наибольшее применение находит натрий. Его используют для получения пероксида натрия, органических синтезах, для получения ряда технически важных металлов (Т1. Zr, Та. Nb) металлотермическим методом, как теплоноситель в ядерных реакторах, для осушки органических растворителей. [c.326]

    Термохимические способы производства водорода заключаются в разложении воды с применением тепловой энергии, которую предполагают получать, используя теплоту гелия, выходящего из ядерных реакторов с гелиевым охлаждением, или другие дешевые источники теплоты. [c.81]

    Ни один из предложенных термохимических циклов пока не осуществлен в промышленности и до сих пор не определены значения КПД циклов, а также затраты иа производство водорода термохимическим методом, т. е. не произведена экономическая оценка этого метода. Однако расчеты показывают, что КПД термохимического получения водорода при верхней температуре цикла Ть приемлемой в смысле применения отбросной теплоты ядерного реактора, больше, чем электролиза воды, и составляет 40—45%. [c.82]

    Существуют системы, в которых необходимо удалять частицы из потока газа при высоких температурах, высоких давлениях или одновременно при высоких температурах и давлениях, например, система сжигания в кипящем слое, в которой выхлопные газы используются для газовой турбины [429] (1000 кПа, 900 °С) газовая турбина с прямым сжиганием топлива (650 кПа, 800 °С) [759], отработанные газы при выплавке стали с применением кислорода (0,1 кПа, 1600 °С) [834], газы, циркулирующие в высокотемпературном ядерном реакторе с газовым охлаждением, работающем под давлением (800 °С, 5000 кПа) [829], высокотемпературная установка для сжигания твердого топлива (100—200 кПа, 850 °С) [693] и др. [c.493]

    Такое совместное применение ионитов и адсорбентов позволит комплексно решить важную экологическую проблему и обеспечить безопасную эксплуатацию ядерных реакторов. [c.353]

    Для осуществления ядерной реакции бомбардирующая частица должна обладать большой энергией. Разработаны и созданы специальные установки (ускорители), позволяющие сообщать заряженным частицам огромную энергию. Для проведения ядерных реакций используются также потоки нейтронов, образующиеся при работе атомных реакторов. Применение этих мощных средств воздействия на атомы позволило осуществить большое число ядерных превращений. [c.95]

    Термический к. п. д. таких циклов может достигать 55%. Однако реализация их сдерживается из-за высоких температур реакций, которые могут быть обеспечены при использовании тепла высокотемпературных ядерных реакторов, а также коррозионной агрессивностью среды, что требует применения специальных конструкционных материалов для оборудования. В связи с этим термохимические циклы не вышли пока из стадии исследовательских работ. [c.131]


    Применение карбидов весьма разнообразно. Они используются в качестве абразивных материалов (В4С), огнеупоров (В4С, ТаС), полупроводниковых материалов (В4С), поглотителей нейтронов в ядерных реакторах (В4С), металлокерамических твердых сплавов (ШгС, Т1С, ТаС), как легирующие добавки при получении жаропрочной стали. Карбид кальция применяется для получения ацетилена. [c.259]

    Было проведено интересное изучение применения насадок в керамическом ядерном реакторе, в котором сравнивались характеристики теплообмена насадки из сферических топливных элементов и насадки из топливных элементов Б виде гексагональных призм, имеющих центральное цилиндрическое [c.202]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    Сурьма находит широкое применение в виде сплавов и соединений. В последние годы сурьма высокой степени чистоты (общая сумма примесей < 1 10 %) находит применение в полупроводниковой технике. Висмут применяется для изготовления легкоплавких сплавов, а также в качестве теплоносителя в энергетических ядерных реакторах. [c.136]

    Окись бериллия ВеО — белое, очень тугоплавкое вещество (/пл 2550°), отличается высокими электроизоляционными свойствами. Весьма устойчив при нагревании до высоких температур (более термостоек, чем большинство других керамических материалов). ВеО находит применение в ядерных реакторах. [c.412]

    Применение гафния пока довольно ограничено. Его используют в качестве материала регулирующих устройств ядерных реакторов, а также в электровакуумной и атомной технике. [c.89]

    Атомная энергетика получает все более широкое применение, так как обеспечивает экономию органического топлива и соответственно снижает загрязнение окружающей среды, вызванное сжиганием природного органического топлива. Вместе с тем в процессе работы ядерных реакторов накапливается значительное [c.404]

    К радиоактивным относятся все элементы после висмута, однако наибольший интерес представляют актиноиды — уран, торий и плутоний, которые нашли применение в ядерных реакторах или автономных источниках энергии. [c.405]

    Торий, уран и плутоний находят значительное применение в виде ядерного топлива в ядерных реакторах. Плутоний получается в результате ядерных превращений урана. Выделение плутония из реактора, отделение его от урана и других образующихся в реакторе элементов представляет собой сложную совокупность химических реакций, блестяще разработанную трудами многих химиков и радиохимиков. [c.289]

    Замечательным примером применения радиоактивных индикаторов в аналитической химии является радиоактивационный анализ. Он основан на образовании в анализируемом материале радиоактивных изотопов или продуктов их превращений определяемых элементов под действием ядерных частиц. Его целесообразно использовать для определения малых примесей, когда обычные аналитические методы непригодны из-за ограниченной чувствительности. В табл. 19.10 приведена чувствительность активационного анализа при использовании для облучения анализируемого вещества медленных нейтронов ядерного реактора. [c.594]

    Основное применение торий находит в качестве источника вторичного ядерного горючего — который получают в ядерных реакторах при облучении тория нейтронами  [c.436]

    Изучение строения атомных ядер, радиоактивности и искусственное приготовление радиоактивных изотопов нашло применение в различных областях науки и техники, а-, р -, р+-, -излучение и выделение свободных нейтронов прежде всего оказывают сильнейшее биологическое воздействие на живые организмы, и использование различных ядерных процессов должно производиться в соответствующих условиях и с применением надежной защиты. Мощные дозы излучения существенно влияют на свойства конструкционных материалов и металлов и, как правило, понижая их пластические свойства, делают их хрупкими. Поглощение Р -, и 7-излучения создает микродефекты в кристаллах (ближние и дальние пары вакансия и атом в междоузлии), нарушает связи в неметаллических материалах. Металлы, обладающие меньшим поперечным сечением захвата (а), в меньшей степени подвергаются воздействию излучения и могут быть использованы для изготовления деталей и узлов ядерных реакторов. Такими являются металлы V, N6, Т1, 2г и др. [c.66]

    Большое применение имеют углеграфитовые материалы. Графитовые эле ктроды применяют в больших количествах в электрометаллургии и электрохимических производствах. Графит используют также для изготовления плавильных тиглей, в металлургии, облицовки панн для получения алюминия, в ядерных реакторах (замедлитель нейтронов), в электротехнике (электрощетки в моторах и др.). Современная техника широко использует и другие углеграфитовые материалы. Графитовое волокно, соединенное полимером, о(5разует композиционный материал малой плотности (р 2 г/см ), ио прочности значительно превосходящий сталь. Из этих материалов делают детали самолетов и ракет. [c.366]

    Исследования по применению ионизирующих излучений для промышленных газофазных процессов были начаты во второй половине 50-х годов. Первыми были работы по исследованию хемоядерного синтеза под действием осколков деления в ядерном реакторе. В настоящее время эти работы прекращены из-за больших трудностей по очистке конечных продуктов от наведенной радио истивности и радиоактивных загрязнений [18]. [c.182]

    Цирконий н сплавы hij его основе применяют как конструкционные материалы в энергетических ядерных реакторах и в химическом машиностроении, в э.иектровакуумиых приборах и в оборонной 7ехнике. Применение гафния пока довольно ограничено. [c.275]

    При использовании для расчета метода свободного тела фланцы представляют как кольцевые пластины. Однако может оказаться предпочтительнее метод конечных элементов, так как оп дает более точную модель соединения, В любом случае болты заменяются цилиндрами с площадью поперечного ссчепня, равной всей площади болта, а влияние отверстий lia жесткость фланца учитывается так же, как это делалось для перфорированных пластин 146]. Таким образом, задача сводится к расчету симметричных тел вра-п1,епия. Этот метод применен к расчету крышек головок ядерных реакторов 47, 48]. Расчет безболтоаых соединений был описан также в 149]. Описание этого и других типов соединений было опубликовано автором [50]. [c.270]

    На ОАО ЧЭЗ успешно провели комплекс работ по применению пекового кокса для производства конструкционных графитов, в том числе для ядерных реакторов. Вместе с тем выявлено, что применение такого кокса сопровождается большими трудностями, связанньпйи с неоднородностью свойств кокса как по отдельным партиям, так и внутри каждого пирога , что обусловлено технологией его получения  [c.174]

    Кадмий сильно поглощает медленные нейтроны. Поэтому его используют в виде стержней в ядерных реакторах для регулирования скорости цепной реакции. Кялмий используется в щелочных а1скумуляторах, входит в лекоюрые-сплавы. Сплавы меди, содержащие - 1% d, служат для изготовления проводов, подвергающихся трению от скольжения контактов не снижая электрической проводимости меди, кадмий улучшает ее механические свойства. Кадмирование стальных изделий лучше, чем цинковое покрытие, предохраняет железо и сталь от ржавления. Из солей кадмия наибольшее применение имеет сульфид. Сульфид кадмия применяется для изготовления краски и цветных стекол. [c.425]

    Ниобий и тантал входят в состав жаропрочных и коррозионноустойчивых сплавов. Химическая стойкость ниобия и тантала обусловила их применение в химическом машиноаппаратостроении в качестве заменителя платины. Их также используют как конструкционные материалы в энергетических ядерных реакторах. Ниобий и тантал обладают способностью хорошо поглощать газы и используются в вакуумной технике. [c.137]

    Применение в энергетике. Бериллий относится к высококачественным замедлителям и отражателям, широко применяемым в высокотемпературных ядерных реакторах. Через тонкие пластины бериллия легко проникают рентгеновские лучи, поэтому его используют для изготовления лучепропускающих окон рентгеновских трубок. [c.228]

    Важной областью применения лантаноидов является атомная техника. Некоторые лантаноиды (0(3, 5т, Ей) обладают высокими значениями сечения захвата тепловых нейтронов В связи о этим гадолиний, самарий и европий вводят в состав защитных керамических покрытий ядерных реакторов. Эти металлы применяют в качестве регулирующих втержней или в виде рассеянных поглотителей тепловых нейтронов. Они имеют преимущество перед кадмием, так как устойчивы к повышенным температурам. [c.71]

    Применение в технике. Применение циркония, так же как и титана, в последнее время сильно развивается, несмотря на сложность переработки его руд Металлический цирконий присаживается к стали как раскислитель и деазотизатор. Сплавы циркония с кобальтом и никелем обладают кислотоупорными свойствами. Цирконий является одним из лучших материалов для ядерных реакторов. Двуокись циркония — огнеупорный материал, который вследствие ничтожного коэффициента расширения (0,00000019— 0,00000089 на 1° ср. у кварца 0,00000048) не трескается при резких колебаниях температуры. Двуокись циркония применяется также в стекловаренном деле, в производстве глазурей, эмалей, для вулканизации каучука, при просвечивании рентгеновскими лучами пищеварительных органов (вместо сернокислого бария) 2гОз входит в состав белил. Нитриды, карбид и силицид применяются как абразивные материалы, как теплоизоляторы и т. п. [c.300]

    Разработаны и другие процессы получения нейтронов при бомбардировке дейтерием. Используются также ядерные реакции, возбуждаемые у-излучением. С пуском ядерных реакторов появился мощный источник нейтронов, намного превосходящий по интенсивности все известные до сих пор методы их получения. Современные ядерные реакторы имеют поток нейтронов порядка Ю нейтрон/(см -с). В реакторах с плотностью нейтронного потока 10 —10 нейтрон/(см -с) можно полностью перевести в другие элементы загруженный материал в течение нескольких месяцев. Применение этого метода для накопления весомых количеств трансурановых элементов можно показать на примере кюрия. При облученииде Сгп потоками нейтронов мощностью 10 нейтрон/(см -с) можно полу- [c.417]

    Жидкий металлический литий применяется как теплоноситель в ядерных реакторах. Гидроксид лития используется в больших количествах как добавка к электролиту щелочных аккумуляторов. Гидрид лития иашел ири-меиение как легкий и портативный источник получения водорода, в органических синтезах и ири получении бороводородов. Моиокристаллы ЫР )1ашли применение в производстве оптических приборов. Фторид и хлорид лития (источник получения металлического лития) применяются как флюсы в производстве многих металлов и сплавов. [c.115]

    Благодаря большому сечению захвата тепловых нейтронов кадмием пз нето изготовляют регулирующие стёрж н и в атом]Тых реак-торах. Важнейшее применение кадмия — про11зводство щелочных аккумуляторов (кадмиевые электроды). Кадмиевая бронза применяется для изготовления телеграфных и телефонны.х проводов, так как по сравнению с чистой медью она обладает большей прочностью, износостойкостью при несколько пониженной электрической проводимости. Ртуть (ртутные катоды) применяют при получении гидроксида натрия и хлора, а также для комплексной переработки полиметаллического сырья (амальгамная металлургия). Кроме того, ртуть используют в ядерных реакторах для отвода теплоты. [c.137]

    Применение углерода и его соединений. Алмаз (большей частью искусственный) иаходит широкое применение при изготовлении режущего и бурового инструмента, а также как абразивный материал. Природный ювелирный алмаз обрабатывают и получают бриллианты. Графит служит основой конструкционных, огнеупорных, электродных, электротехнических и анти-фрикционнЕлх материалов. Кроме того, графит применяется как замедлитель нейтронов в ядерных реакторах. Технический углерод (сажа) используется как иаполни гель резин и пластмасс. Из сажи вырабатываются краски — типографские, малярные, тушь, красители для кожи и лент пишущих машин. Стеклографит (стеклообразный углерод), получаемый пиролизом некоторых углеродсодержащих соединений, исключительно тугоплавок, механически прочен и химически инертен. Он применяется как конструкционный материал в химическом машиностроении, электротехнике, атомной энергетике, космической технике. [c.197]

    Применение элементов подгруппы мышьяка и их соединений. До недавнего времени (50-е годы XX в.) применение элементов подгруппы мышьяка было сравнительно ограничено. Они использовались главным образом в качестве легирующих добавок к специальным сплавам. Так, добавление 0,5% As к свинцу сильно увеличивает поверхностное натяжение последнего в расплавленном состоянии, что улучшает литейные качества. Сурьма является важной составной частью типографских сплавов и баббитов. Ее действие выражается в повышении твердости свинцово-оловянной основы. Висмут, в свою очередь, является основой ряда легкоплавких сплавов, наиример сплава Вуда (четверная эвтектика, состоящая из 50% Bi, 25% РЬ, по 12,5% Sn и d с температурой плавления 60,5°С). Легкоплавкие сплавы на основе Bi используют в качестве теплоносителей в ядерных реакторах. Для этих же целей используют и чистый висмут, обладающий сравнительно низкой температурой плавления (271 °С) и очень высокой температурой кипения (1427 "С). [c.299]

    Применение лантаноидов и элементов подгруппы скандия. В настоящее время они приобрели большое значение. Почти все эти элементы используются для создания метастабнльных уровней в различных твердых лазерных материалах и как активирующие добавки к люми-нос рам (см. 9). В виде мишметалла (смешанный металл), состоящего из различных редкоземельных элементов, их используют для приготовления пирофориых сплавов, из которых готовят кремни для зажигалок, смеси для трассирующих снарядов и пуль и т. д. Их применяют в качестве присадок (раскислителей) к цветным металлам и сплавам, как геттеры в высоковакуумных приборах, для сплавов специального назначения. Например, добавки церия, неодима и др. к сплавам магния повышают жаростойкость, что важно для деталей управляемых снарядов, сверхзвуковых самолетов, оболочек искусственных спутников. Гадолиний, самарий, европий хорошо поглощают тепловые нейтроны, поэтому применяются в ядерных реакторах. ФтзОз излучают мягкие Р-лучи (энергия 0,23 мэв) и поэтому используются в атомных микробатареях. [c.328]

    Применение металлов подгруппы цинка и их соединений. Большое количество цинка и кадмия расходуется на покрытие изделий из черных металлов в целях защиты их от коррозии. Для этого применяют электрохимические и химические методы. Эти покрытия анодные. Цинк применяется в производстве цинково-угольных элементов (Лекланше), сплавов с медью (латунь, томпак) и как протектор. Кадмий — один из компонентов легкоплавких сплавов (сплавы Вуда, Розе и др.). Его используют как поглотитель нейтронов в регулировании работы ядерных реакторов. Из кадмия готовят электроды щелочных аккумуляторов. Металлическая ртуть применяется для изготовления различных приборов вакуумных манометров и насосов, выпрямителей, ртутных кварцевых ламп, барометров, термометров и т. д. Очищают ртуть фильтрованием через бумагу или замшу и, пропуская ее в виде мелких капель через колонку с раствором нитрата ртути (I), подкисленным азотной кислотой, а также перегоняя в вакууме. [c.364]


Смотреть страницы где упоминается термин Ядерные реакторы применение: [c.111]    [c.345]    [c.19]    [c.128]    [c.146]    [c.341]   
Химия изотопов Издание 2 (1957) -- [ c.20 , c.195 , c.196 , c.203 , c.437 ]




ПОИСК





Смотрите так же термины и статьи:

Реактор ядерный



© 2025 chem21.info Реклама на сайте