Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфор хлоридом циркония

    Очень малые количества фосфора в присутствии больших количеств меди, никеля и хрома (VI) лучше выделять аммиаком, взятым в небольшом избытке, после введения в раствор 0,1—0,2 8 алюминия или железа в виде какой-либо подходящей соли. Осадок отфильтровывают, растворяют в разбавленной азотной кислоте и затем осаждают фосфор из раствора молибдатом Малые количества фосфора можно выделить также из. раствора вместе с цирконием следующим образом. К солянокислому раствору ортофосфата прибавляют избыточное количество хлорида циркония, выпаривают досуха, растворяют остаток в 30 мл соляной кислоты и 10 мл бромистоводородной кислоты, а затем кипятят для удаления мышьяка. После этого выпаривают досуха, прокаливают, обрабатывают остаток разбавленной (1 1) соляной кислотой, выпаривают до объема 20 мл и разбавляют 500 мл горячей воды. Дают постоять при 50° С и затем [c.779]


    Хлор является весьма активным реагентом. При высоких температурах он способен вытеснять серу из сульфидов, а в присутствии восстановителей хлорировать окислы различных металлов и вытеснять из сульфатов, фосфатов, силикатов кислородные соединения серы, фосфора, кремния с образованием соответствующих хлоридов. Это используют в технологии благородных и цветных металлов при рафинировке золота, алюминия, свинца и олова а также в металлургии титана и редких металлов — циркония, тантала, ниобия и др.При хлорировании полиметаллических руд образующиеся хлориды могут быть разделены на основе различия в температурах испарения, а также методами экстракции [c.731]

    В бронзах, фториде и хлориде церия, хромсодержащих сплавах, ферромарганце, ферротитане, флюорите, термитном железе и хлорокиси циркония фосфор определяют фотометрическим молибдатным методом [1058.  [c.131]

    Разложение бериллиевых минералов в основном осуществляется так же, как описано в гл. Алюминий (стр. 559). Измельченный минерал сплавляют с карбонатом натрия, плав растворяют в соляной кислоте, выделяют кремнекислоту выпариванием, отфильтровывают ее и фильтрат осаждают раствором аммиака или бикарбоната натрия. Берилл можно сплавить с перекисью натрия в никелевом тигле. Фосфатные минералы можно разложить обработкой царской водкой, после чего раствор несколько раз выпаривают с азотной кислотой досуха для разложения хлоридов . Нерастворимый остаток отделяют фильтрованием, прокаливают, сплавляют с карбонатом натрия и плав выщелачивают водой. Водный экстракт содержит фосфат, а нерастворимый осадок может состоять из титана и циркония. В дальнейшем поступают в зависимости от того, какие элементы следует определить. Если, например, требуется определить только фосфор, осадок отбрасывают, а фильтрат присоединяют к основному раствору. [c.582]

    Осаждение в виде фосфоромолибдата аммония. Для осаждения фосфоромолибдата аммония требуется избыток осадителя. В обычных случаях в 100 мл раствора должно содержаться на 1,3 г МоОз больше, чем это теоретически требуется для образования фосфоромолибдата (56 мг МоОз на 1 мг Р). Больший избыток молибдата не мешает осаждению, но при этом образуется осадок, несколько более богатый МоОз. В некоторых условиях для полного осаждения фосфора может потребоваться вдвое ббльшая концентрация реагента, как, например, в присутствии больших количеств титана, циркония, хлорида или сульфата. Для быстрого и полного осаждения необходимо, чтобы в растворе содержалось 5—10% нитрата аммония. Концентрация азотной кислоты может колебаться в пределах от 5 до 10 % (по объему). Повышение кислотности приводит к неполноте осаждения, если одновременно не увеличить концентрацию нитрата аммония и молибдата в растворе. Умеренные количества хлорной кислоты (1 20) или перхлората аммония (10%) не мешают осаждению. [c.782]


    Л. А. Нисельсон 151.5] для разделения циркония и гафния применил метод ректификации продуктов взаимодействия хлоридов с хлорокисью фосфора, пользуясь тарельчато-сетчатой колонкой с 50 реальным и тарелками. [c.194]

    IV), ниобий, тантал, титан, цирконий, а в больших количествах — вольфрам и даже ванадий (V) осадки увлекают с собой некоторое количество фосфат-ионов. Висмут, торий, мышьяк (V), хлорид-и фторнд-ионы замедляют образование окрашенного соединения. Если присутствуют фторид-ионы, прибавляют в избытке борную кислоту. Медь и никель мешают окраской своих ионов, если измерение проводят при К — 460 ммк. Восстановители должны быть предварительно окисленными. Хром (VI) мешает определению. Мышьяк (V) образует окрашенное соединение, окраска которого в 100 раз слабее окраски соединения фосфора (V). Пирофосфат-ионы не мешают анализу, что дает возможность определять этим способом фосфаты в присутствии пирофосфатов, надо только прибавить реактив в достаточном избытке. Цитрат-ионы мешают определению. [c.1091]

    Разница в константах обмена отдельных галогенид-ионов, как отмечалось в гл. 3, значительно больше, чем, например, для ионов отдельных щелочных металлов. Иодид-ион сорбируется так сильно, что его трудно десорбировать. Для вымывания этого иона из колонки используют иногда мягкое окисление до свободного иода. С другой стороны, фторид-ион сорбируется очень слабо, слабее других анионов фторид-ион вымывается из колонки соляной кислотой или гидроокисью натрия. Это свойство фторид-иона является большим преимуществом, так как дает возможность определять фтор фотометрическим методом по реакции маскирования комплекса циркония с ализарином или ализарин-комплексоном, которому мешают многие ионы (см. гл. 5). Методом анионного обмена при промывании колонки концентрированным раствором соляной кислоты [671 или буферным раствором аммиака с хлоридом аммония [68] фтор может быть отделен от железа, алюминия и фосфора. При промывании колонки гидроокисью натрия фтор отделяется от силиката, алюмината [69] и фосфата (при этом фтор вымывается первым). [c.216]

    Проведенные исследования указывают на принципиальную возможность разделения циркония и гафния методом дистилляции продуктов взаимодействия их соединений с хлорокисью фосфора. Однако большое число дополнительных операций, связанных с применением хлорида и оксихлорида фосфора, делают эти способы громоздкими и потому менее рентабельными, чем ректификация тетрахлоридов под давлением. [c.42]

    Измерения интенсивности люминесценции производят в прямоугольных кюветах емкостью 25 мл на флуориметре. Установку прибора на О производят по раствору, не содержащему хлорида алюминия и ионов фтора, на 100 — по раствору, не содержащему ионов фтора. Возможны измерения при содержании в 50 мл раствора от 0,2 до 100 мкг иона фтора. Ошибка колеблется в пределах 0,2—20% (в зависимости от содержания фтора в пробе). Мешают определению ионы хрома, железа, никеля, кобальта, бериллия, циркония, тория, кремния и фосфора. В их присутствии необходимо предварительно отогнать фтор в виде кремнефтористоводородной кислоты. [c.343]

    Летучие соединения элементов в особо чистом состоянии все шире применяются для получения чистых металлов и полупроводниковых слоев. Наиболее широким классом соединений в этом плане могут быть летучие хлориды элементов 1И—VI групп периодической системы трихлориды бора, алюминия, галлия, фосфора, мышьяка, сурьмы и висмута, тетрахлориды углерода, кремния, германия, олова, титана, циркония, гафния, ванадия и теллура, пентахлориды ниобия, тантала и молибдена, гексахлорид вольфрама, хлористые сера и селен. Эти вещества имеют молекулярную кристаллическую структуру и, как следствие этого, низкие температуры кипения и плавления. Многие из перечисленных хлоридов служат исходными продуктами для получения элементов особой чистоты — бора [1], кремния 12—4], германия [5—7], циркония и гафния [8, 9], мышьяка [10] и др. Особо чистые хлориды имеют также и самостоятельное значение [11, 12] как катализаторы некоторых химических процессов. [c.33]

    Этот же метод может служить для извлечения части или всего фосфора нз растворов, содержащих большие его количества. В нервом случае раствор, в котором находится 10—20 мл соляной или серной кислоты, нагревают приблизительно до 50° С, затем медленно вводят раствор хлорида циркония до образования осадка. Дают отстояться и фильтруют. Для полного выделения фосфора к фильтрату добавляют небольшой избыток раствора хлорида циркония, нагревают до кипения и затем медленно при перемешивании вводят неболыаой избыток аммиака. Прибавляют бумажную массу и фильтруют. В фильтрате определяют щелочноземельные металлы, магний и щелочные металлы. [c.780]


    Сульфоксиды являются эффективными экстрагентами уранил-нитрата, нитратов тория, циркония, хлорида теллура [131]. Индивидуальные диалкил- и циклоалкилсульфоксиды по экстракционной способности превосходили трибутилфосфат и другие фосфор- [c.343]

    Разделение суспензией карбоната бария. Суспензия готовится. сливание.м растворов хлорида бария и карбоната натрия с таким расчето.м, чтобы небольшое количество хлорида бария оказалось в избытке. В это.м случае суспензия создает в растворе pH 7,25 [1484]. Суспензия позволяет отделить от кобальта катионы трехвалентного железа, алюминия, титана, циркония, хро.ма и урана, а также фосфор и ванадий, если присутствуют перечисленные выше элементы. [c.66]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Этот метод имеет важное значение, так как предполагает использование в. качестве исходных материалов безводных хлоридов, представляющих технический продукт. Для получения комплексных соединений в качестве исходного-материала Хадсуэл и Хатчен [287] пользовались окисью циркония, к которой В. небольшом избытке добавляли пятихлористый фосфор. [c.94]

    Известен также -ряд других методов —хлорирование монацита в смеси с углем при 700—800° С, при котором удаляются легколетучие хлориды (железа, алюминия, циркония, титана и др.) и оксихлорид фосфора отгонка фосфора в виде фосфина РНз или в элементарном состоянии путем нагревания монацита с углем и соответствующими добавками сплавление С фторси-ликатом или разложение плавиковой кислотой, в результате которых РЗЭ выделяются в виде фторидов разложение хлорной кислотой [619]. Однако эти способы не получают промышленного применения вследствие неудобства технического оформления или вследствие дороговизны реактивов. [c.313]

    Zr U может быть получен в результате обменных реакций хлоридов с диоксидом циркония, в частности пропускания над нагретой 2гОг паров хлорида кремния или бора, смеси хлора и хлорида серы, а также взаимодействия смеси четыреххлористого углерода и хлора с диоксидом циркония при 800 °С, нагревания пентахлорида фосфора и диоксида циркония в вакууме при 150—190°С. [c.286]

    Для получения чистого металла Литтон [10] пользовался тетрахлоридом гафния, очищенным от циркония многократной ректификацией комплексных соединений их тетрахлоридов с хлорокисью фосфора состава Me l4 PO I3 [11, 12]. Конечный дистиллат переводили в двуокись гафния, а последнюю — в тетрахлорид, который затем восстанавливали порошком магния до гафниевой губки в реакторе из нержавеющей стали. Избыток магния в шихте составлял около 10% от стехиометрически необходимого количества. Для начала восстановления реактор нагревали до 650° С с помощью наружного обогрева. Продукты реакции выщелачивали 5%-ной соляной кислотой, после чего гафниевую губку тщательно отмывали от хлоридов дистиллированной водой. Извлечение гафния составляло 72%. Из губки получали компактный гафний иодидным рафинированием. [c.80]

    Мешают определешпз перйодаты, нитриты, тиоцианиды, ферроцианиды. Не мешают любые количества цинка, кадмия, свинца, вис-мзгта, а также I мг (мл на 2 мкг меди) алшиния, мышьяка, кобальта, хрома, железа, германия, марганца, молибдена, никеля, фосфора, сурьмы, селена, олова, теллура, титана, вольфрама, ванадия, циркония не мещают хлориды, сульфаты, нитраты, перхлораты, тар-траты, цитраты, ацетаты, пирофосфаты, фосфаты. [c.58]

    Тетрахлорид циркония имеет вид блестящих белых кристаллов с плотностью 2,80 г/см он сублимируется при 331°, растворяется в спирте, эфире, концентрированной соляной кислоте, хлоридах щелочных металлов и др., гидролизуется водой, образует аддукты с аммиаком, многими органическими аминами, оксихло-ридом фосфора, ацетоном и др. [c.120]


Смотреть страницы где упоминается термин Фосфор хлоридом циркония: [c.184]    [c.83]    [c.301]    [c.345]    [c.86]    [c.180]    [c.643]    [c.154]    [c.438]    [c.142]   
Практическое руководство по неорганическому анализу (1960) -- [ c.713 ]




ПОИСК





Смотрите так же термины и статьи:

Цирконила хлорид



© 2024 chem21.info Реклама на сайте