Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез первичных продуктов

    Давление влияет главным образом на характер получаемых при синтезе первичных продуктов. Повышение давления от нормального до 10—12 ат сдвигает реакцию в сторону образования более тяжелых углеводородов. Увеличение давления до 5—6 ат приводит к увеличению суммарного выхода первичных продуктов и значительному увеличению выхода парафина. Увеличение выхода парафина продолжается и при дальнейшем росте давления до 10—15 ат (табл. 36). [c.207]


    Выход и состав первичных продуктов синтеза под нормальным давлением (кроме остаточного газа) суммарно с двух ступеней процесса [c.100]

Рис. 15. Состав первичных продуктов синтеза (по Мартину) [44]. Рис. 15. Состав <a href="/info/315639">первичных продуктов синтеза</a> (по Мартину) [44].
    Первичными продуктами синтеза из СО-водородной смеси являются газообразные углеводороды, жидкие продукты, представляющие собой смесь кислородсодержащих соединений и углеводородов, и реакционная вода. [c.191]

    Ацетиленовые традиции оказались столь сильны, что даже когда было уже налажено производство более дешевых первичных продуктов для дальнейшего органического синтеза—этилена и пропилена, многие специалисты упорно продолжали растить на ацетиленовом древе новые веточки и листочки, то есть работали над дальнейшим усовершенствованием ацетиленовых технологий. [c.106]

    В результате дистилляции конденсатного масла получают тяжелый бензин, дизельное масло и остаток, состоящий в основном из парафина. Тяжелый бензин после промывки щелочью и водой поступает на смешение с легким бензином или после соответствующей обработки может выпускаться как растворитель. Дизельное масло выпускается как высокоцетановая присадка к дизельному топливу или как сырье для производства моющих средств. Парафиновый гач, собранный в парафиноотделителях, смешивают с остатком от разгонки конденсатного масла и продуктами, полученными при экстракции катализатора и подают на вакуум-дистилляцию с получением масла, мягкого и твердого парафина. Мягкий и твердый парафины после соответствующей очистки выпускают как товарные продукты. Реакционная вода после первой и второй ступени поступает на дистилляцию для выделения спиртового концентрата, отправляемого на дальнейшую переработку. Примерный материальный баланс первичных продуктов синтеза углеводородов представлен на рис. 7.3. [c.111]

Рис. 7,3. Примерный материальный баланс первичных продуктов синтеза углеводородов Рис. 7,3. Примерный <a href="/info/315639">материальный баланс первичных продуктов синтеза</a> углеводородов

Рис. 7.4. Реактор синтеза углеводородов в жидкой фазе 1- регулятор уровня 2-паросборник 3-реактор 4-газораспределитель-ная решетка 5-трубчатый холодильник I-вода П-низкокипящие первичные продукты П1-синтез-газ 1У-жидкая фаза, отработанный катализатор У-свежий катализа-тор У1-реакционный-газ УП-пар. Рис. 7.4. <a href="/info/315745">Реактор синтеза углеводородов</a> в <a href="/info/30223">жидкой фазе</a> 1- регулятор уровня 2-паросборник 3-реактор 4-газораспределитель-ная решетка 5-<a href="/info/739230">трубчатый холодильник</a> I-вода П-низкокипящие <a href="/info/315639">первичные продукты</a> П1-синтез-газ 1У-<a href="/info/30223">жидкая фаза</a>, отработанный катализатор У-свежий катализа-тор У1-реакционный-газ УП-пар.
    Технологическая схема синтеза углеводородов в жидкой фазе приведена на рис. 7.5. Синтез-газ, очищенный от сернистых соединений, компрессором (1) сжимают до 1,2 МПа и после прохождения им теплообменника (2), где он нагревается за счет тепла остаточного газа, через распределительное устройство подают в реактор (3). Из остаточного газа, отходящего с верха реактора, путем теплообмена с исходным газом выделяют высококипящие продукты синтеза и часть испарившейся жидкой среды. Эти продукты собирают в емкости (5). Низкокипящие жидкие продукты синтеза и образующиеся пары воды, пройдя водяной холодильник (4), где происходит конденсация и охлаждение продуктов до 30°С, также поступают в емкости (5). Разделение первичных продуктов синтеза и воды происходит в аппаратах (6). Остаточный газ после охлаждения направляют на установку (10), где его промывают маслом под давлением или пропускают через активный уголь для отделения СО2. Эту операцию проводят в том случае, если остаточный газ возвращают на циркуляцию или направляют на вторую ступень синтеза. [c.114]

    Высококипящие первичные продукты синтеза не выносятся с остаточным газом - их выделяют из суспензии, которую на специальном фильтре [c.114]

    Как показывает тепловой баланс, 30% от общего теплосодержания технического газа синтеза (вместе с инертными примесями) переходит в первичные продукты реакции (Сз-углеводороды и выше). Однако если принять в расчет образующийся в реакторах пар и содержащийся в отходящих газах метан, то окажется, что полезный возврат тепла составляет 55%. На 1 т первичных продуктов расходуется 4,5—5,5 т кокса. [c.61]

    Реакция между алкилгалогенидами и аммиаком или первичными аминами обычно непригодна для синтеза первичных или вторичных аминов, так как последние являются более сильными основаниями, чем аммиак, и сами предпочтительно атакуют субстрат. Однако эта реакция может оказаться весьма полезной для получения третичных аминов [657] и четвертичных аммониевых солей. Если в качестве нуклеофила выступает аммиак, то три или четыре алкильные группы, связанные с атомом азота в продукте, окажутся одинаковыми. При использовании первичных, вторичных или третичных аминов можно получить соединения, в которых с атомом азота связаны различные алкильные группы. Превращение третичных аминов в четвертичные соли называется реакцией Меншуткина [658]. Иногда этим методом удается приготовить также первичные амины (при использовании большого избытка аммиака) и вторичные амины (при использовании большого избытка первичного амина). Однако ограничение такого подхода хорошо иллюстрируется реакцией насыщенного раствора аммиака в 90 %,-ном этаноле с этилбромидом при молярном отношении реагентов 16 1, в которой выход первичного амина достигал лишь 34,2 %, (при отношении реагентов 1 1 выход составлял 11,3%) [659]. Субстраты лишь одного типа дают приемлемые выходы первичных аминов (при условии, что аммиак взят в большом избытке) — это а-замещенные кислоты, которые превращаются в аминокислоты. [c.146]

    Как видно из приведенных данных, съем первичных продуктов синтеза с 1 катализатора в единицу времени в 10 раз больше, чем на кобальт-ториевом катализаторе. [c.564]

    Фотосинтез. — Весь сложный органический материал, из которого построены зеленые растения, синтезируется из дву-i окиси углерода — единственного источника углерода, — воды и неорганических солей, входящих в состав почвы. Животный организм не способен начинать синтез, исходя из таких простыв соединений, и поэтому целиком зависит от органического материала, который он получает с пищей. Так как жиры и белки растений, по всей вероятности, образуются из углеводных предшественников, а не наоборот, то очевидно, что углеводы являются первичными продуктами фотосинтеза. В суммарном процессе, выражаемом уравнением [c.579]

    ФСП принимает участие как в генерировании электронного транспорта, так и в формировании трансмембранного градиента протонов. Результатом этих процессов является синтез первичных продуктов фотосинтеза АТФ и НАДФН , энергия которых используется в различных биохимических реакциях и, в первую очередь, для осуществления фиксации углекислого газа. [c.10]


    Патогенез болезни обусловлен тем, что при отсутствии синтеза первичного продукта гена (трансмембранного регулятора) нарушается транспорт хлоридов в эпителиальных клетках. Это приводит к избыточному выведению хлоридов, следствие чего — гиперсекреция густой слизи в клетках эндокринной части поджелудочной железы, эпителии бронхов, слизистой оболочки ЖКТ. Выводные протоки поджелудочной железы закупориваются, слизь не выводится, образуются кисты (отсюда второе название муковисцидоза — кистозный фиброз) (рис. 4.24). Ферменты поджелудочной железы не поступают в просвет кишечника. Гиперпродукция слизи в бронхиальном дереве ведёт к закупорке мелких бронхов и последующему присоединению инфекции (рис. 4.25). Подобные процессы развиваются в придаточных пазухах, в ка- [c.138]

    Синтез 1П0 Фишеру—Тропшу рассматривался первоначально как синтез бензина, и переработка первичных продуктов была полностью подчинена задаче получения максимального количества бензина. Позднее выяснились большие возможности использования средних фракций синтеза как сырья для проведения различных реакций замещения и-парафинового гача как сырья для окисления или для производства синтетических смазочных масел. После этого основной операцией переработки продуктов синтеза стала их ректификация. [c.105]

    Природные и попутные нефтяные (иначе нефтепромысловые) углеводородные газы являются ценным сырьем для производства топлив и сырья для нефтехимического синтеза. Основные продукты первичной переработки этих газов — газовый бензин, сжиженные и сухие газы, технические индивидуальные углеводороды пропан, изобутан, н-бутан, пейтан. Переработка природных и попутных нефтяных газов осуществляется на газоперерабатывающих заводах, которые строятся на крупных нефтяных и газовых промыслах .  [c.153]

    Из данных по синтезу КНз при бомбардировке смеси авота и водорода электропами заданной энергии следует, что минимальная энергия электронов, необ.ходимая для образования аммиака, равна 17 эв. Вследствие близости этого числа к потенциалу ионизации молекулы а юта, равному 15,65 эв, большинством исследователей принимается, что первичными активными центрами в реакции синтеза аммиака являются молекулярные ионы азота N2- Этн иопы должны легко взаимодействовать с водородом. Из масс-спектрометрического исследования рассматриваемой реакпии можно заключить, что первичным продуктом взаимодействия являются ионы КаН+, вероятно возникающие в результате процесса N3 + Нз = МзН - + Н (см. [66, 30]). [c.180]

    Конверсия метана природного газа с водяным паром — пока основной промышленный способ производства водорода. Первичный продукт конверсии метана — это синтез-газ (тСО + пИ.2), который помимо получения водорода применяется для производства метанола, высших спиртов, синтетического бензина и др. Предполагается применепне синтез-газа в качестве восстановительного агента для прямого восстановления металлов (железа) из руд. Метод конверсии состоит в окислении метана водным паром или кислородом по следующим основным уравнениям реакций  [c.73]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

    З-начительно больше, чем на реакции распада, влияет совместное крекирование углеводородов различных классов на реакции синтеза. При крекировании индивидуальных углеводор одов только -непредельные и ароматические в числе первичных продуктов превращения дают продукты уплотнения (полимеризации и конденсации). Парафины и нафтены сами по себе не способны к реакции упл отнения. Однако в определ-енных условиях, олефины могут присоединяться (алкнлировать) не только к ароматическим, но и к нафтеновым и даже, парафиновым углеводо-родам. [c.113]

Рис.7.5. Схема синтеза углеводородов в жидкой фазе 1-компрессор 2-теплообменник 3-реактор 4-конденсатор 5-продуктовые емкости 6-разделительные емкости 7-насосы 8-фильтр 9-центрифуга 10-установка для выделения СОг 11-аппарат для приготовления суспензии катализатора 12-емкость для масла 1-очищенный газ 11-вода Ш-водяной пар IV-вода V-низкокипящие первичные продукты VI-высококипящие первичные продукты УП-жидкая фаза и оотработанный катализатор УШ- отработанный катализатор IX-свежий катализатор Х-остаточный газ XI- O2 Рис.7.5. <a href="/info/25483">Схема синтеза</a> углеводородов в <a href="/info/30223">жидкой фазе</a> 1-компрессор 2-теплообменник 3-реактор 4-конденсатор 5-продуктовые емкости 6-разделительные емкости 7-насосы 8-фильтр 9-центрифуга 10-установка для выделения СОг 11-аппарат для <a href="/info/1710313">приготовления суспензии катализатора</a> 12-емкость для масла 1-очищенный газ 11-вода Ш-водяной пар IV-вода V-низкокипящие <a href="/info/315639">первичные продукты</a> VI-высококипящие <a href="/info/315639">первичные продукты</a> УП-<a href="/info/30223">жидкая фаза</a> и оотработанный катализатор УШ- отработанный катализатор IX-свежий катализатор Х-остаточный газ XI- O2
    Поглощение катионов двухвалентных металлов сопровождается выделением эквивалентного количества протонов из мембраны, так что фактически мембрана (ее связывающие единицы) обменивают протоны на катионы металлов. Перенос ионов приводит к проникновению воды, и митохондрия набухает набухания не происходит, если ионы связываются неорганическим фосфатом и образуют осадок. Одновалентные ионы калия и натрия способны и пассивна проникать во внутреннее пространство, если имеются анионы и субстрат этот процесс также ведет к набуханию митохондрии. В процессе переноса через мембрану, например, аниона фосфорной кислоты, он прежде чем войти в белково-липидный слой мембраны, превращается в нейтральную частицу (лучшая растворимость в липидной среде). По этой причине протоны вместе с анионами также переносятся из внешней во внутреннюю зону. Работа митохондрий по созданиго макроэргических связей не ограничивается образованием только АТФ первичные продукты деятельности аппарата сопряжения, поставляющие активные богатые энергией вещества и для транслоказы, и для образования НАДФ-Нг, и для синтеза АТФ, мало исследованы, хотя работы по их изучению ведутся интенсивно. [c.390]

    V — вода синтеза VI — высококипящие первичные продукты VII — продукты синтеза VIII — остаточный газ п Сз п выше IX — СОг X — отработанный катализатор. [c.567]

    Ключевая стадия показанной цепочки превращений — присоединение енолята 91 по двойной связи енона 90 [14с] (реакция Михаэля). Первичным продуктом этой реакции является тоже енолят-анион 92, способньхй к обратимой изомеризации в енолят 93. Нуклеофильный центр последнего пространственно сближен с имеющимся в молекуле электрофильным центром, карбонильной группой циклогексанового кольца, благодаря чему в условиях реакции достаточно легко протекает внутримолекулярная альдольная конденсация, сопровождающаяся дегидратацией, и в результате образуется би-циклический ендион 94. Показанный дикетон является одним из важнейших промежуточных полупродукгов в синтезе полициклических терпеноидов и [c.114]

    Так, нитрит серебра следует употреблять только с такими субстратами, которые с трудом превращаются в ионы карбония, например с первичными алкилгалогенидами или особенно с первичными галогенидами, имеющими электроноакцепторные заместители. По той же причине нитрит натрия намного превосходит нитрит серебра как реагент в синтезе всех типов вторичных нитросоединений. Специфические детали синтеза, обзор по которому сделан Корнблюмом [21, будут далее рассмотрены таким образом, чтобы обрисовать, как конкретно реализуются вышеизложенные принципы. Для сведения к минимуму образования побочных продуктов, например нитритов, нитратов и спиртов, важно соблюдать определенные у словия эксперимента. Хорошие выходы нитросоединений можно получить при использовании нитрита серебра и первичных алкилбромидов или ал-килиодидов при О °С, позволяя затем температуре подняться до комнатной. Подобным образом хорошие выходы получают с а-иодзаме-щенными сложными эфирами, и первичными алкилбромидами и ал-килиодидами, имеющими разветвление в -положении по отношению к атому углерода, с которым связан галоген. Действительно, применение нитрита серебра предпочтительно при синтезе первичных нитроалканов и сложных эфиров с нитрогруппой в а-положении [31. [c.490]

    С-ацилирование дианионов нитроалканов выгодно отличается от О-ацилироваиия моноанионов нитросоединений, которое ириводит к образованию сложной смеси трудноразделимых иродуктов вторичных превращений смешанных ангидридов нитроновых кислот как первичных продуктов О-ацилировання. В отличие от этого нри взаимодействин первичных нитроалканов с метоксимагнийметилкарбонатом происходит гладкое С-карбоксилирование, что представляет собой общий метод синтеза а-нитрокарбоновых кнслот. [c.1669]

    Эта реакция, названная перегруппировкой Лоссена, нашла лишь небольшое применение в синтезе [27, 169, 170] и не имеет никаких определенных преимуществ по сравнению с реакциями Курциуса, Гофмана и Шмидта. Она может быть полезной в тех случаях, когда гидр-оксамовые кислоты получаются в качестве первичных продуктов [171]. [c.347]

    Нефтехим. произ-во начинается с получения первичных нефтехим. продуктов, частично поставляемых нефтепереработкой, напр, прямогонный бензин, высокоароматизир. бензины с установок каталитич. риформинга и пиролиза, низшие фракции парафинов и олефииов, керосин, газойль, мазут и выделяемые из них жидкие и твердые парафины. На основе первичных нефтехим. продуктов (гл. обр. непредельных и ароматич. углеводородов) производятся вторичные продукты, представленные разл. классами орг. соединений (спирты, альдегиды, карбоновые к-ты, амины, нитрилы и др.) на основе вторичных (и частично первичных)-конечные (товарные) продукты (см. схему). Жидкие, твердые или газообразные углеводороды нефти и газа (гл. обр. н-алканы) являются сырьем для микробиол. синтеза кормовых продуктов (см. Микробиологический синтез). [c.229]

    Известно неск. типов РНК. Рибосомные рибонуклеиновые кислоты, связываясь с рибосомными белками, образуют рибосомы, в к-рых осуществляется синтез белка. Матричные рибонуклеиновые кислоты служат матрицами для синтеза белков (трансляции). тРНК осуществляют связывание соответствующей аминокислоты и ее перенос к рибосомам. Обнаружены т.наз. малые ядерные РНК, участвующие в превращ. первичных продуктов транскрипции в функционирующие молекулы т.наз. антисмысловые РНК участвуют в регуляции биосинтеза белка и репликации плазмидных ДНК. В виде РНК представлены геиомы мн. вирусов (РНК-содержащие вирусы), в к-рых матрицами для синтеза РНК служат вирусные РНК. Нек-рые РНК обладают ферментативной активностью, катализируя расщепление и образование фосфодиэфирных связей в своих собственных или др. молекулах РНК. [c.298]


Смотреть страницы где упоминается термин Синтез первичных продуктов: [c.150]    [c.273]    [c.287]    [c.328]    [c.576]    [c.167]    [c.514]    [c.517]    [c.112]    [c.132]    [c.93]    [c.145]   
Общая химическая технология топлива Издание 2 (1947) -- [ c.476 ]




ПОИСК







© 2025 chem21.info Реклама на сайте