Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Графит адсорбция

    Например, при адсорбции молекул, обладающих дипольным моментом на графите, атомы углерода которого имеют поляризуемость 1, вклад индукционных сил в потенциальную энергию адсорбции составляет [c.494]

    Программа построения (составления соответствующих таблиц) вычислительного графа. В результате ее работы получают таблицы, задающие вычислительную и топологическую структуру графа ОП. В случае выполнения закона действующих масс Лэнгмюра—Темкина она работает по выходной информации предьщущей программы. В других случаях, как, например, при многоцентровой адсорбции промежуточных веществ или при учете индуцированной неоднородности, уравнения стационарности необходимо предварительно привести к виду [c.203]


Рис. III. 2. Потенциальные кривые адсорбции аргона на графите (/) и взаимодействия атомов аргона и углерода 2). Рис. III. 2. <a href="/info/724693">Потенциальные кривые адсорбции</a> аргона на графите (/) и <a href="/info/926143">взаимодействия атомов аргона</a> и углерода 2).
    Имеются основания предполагать, что адсорбция на активированном или графитизированном угле, а также на графите должна происходить главным образом на базисных плоскостях. Поэтому поверхность этих веществ должна, по-видимому, иметь-довольно однородный характер. Это подтверждается полученными значениями теплот адсорбции физически адсорбированных молекул. Так, теплоты адсорбции многих газов, включая аргон, азот, кислород и ряд углеводородов, имеют практически постоянные значения [39б-е]. В некоторых случаях теплота адсорбции слегка уменьшается с увеличением степени заполнения. Гольдман и Поляни [39е, 175], в частности, указывают,, что теплоты адсорбции хлористого этила на угле при увеличении 0 от 0,09 до 0,60 падают с 12,5 до 9,5 ккал/моль. Теплоты десорбции н-пентана [39г], сероуглерода 39д] и диэтилового эфира [39е] на том же угле обнаруживают подобную же зависимость от степени заполнения. Следовательно, можно сделать вывод, что в аналогичных случаях уменьшение теплоты адсорбции вызывается неоднородностью поверхности. [c.111]

    Потенциал плоскости максимального приближения не может быть измерен электрическими методами. Однако, если получить экспериментальную изотерму адсорбции ионогенного ПАВ (например, олеата натрия, натриевых солей некоторых алкилсульфо-кислот и т. п.) из его водного раствора на гидрофобном, практически не заряженном в воде порошке (например, угле, графите), можно с большой достоверностью рассчитать т з-потенциал. [c.74]

    Графитовый электрод позволяет работать в несколько более отрицательных областях потенциалов, чем электроды из благородных металлов, но из-за пористой структуры, обусловливающей адсорбцию веществ из раствора, он дает несколько менее воспроизводимые результаты измерения электрических параметров и высокий остаточный ток. Однако при соответствующей обработке (пропитка различными составами, например смолами, парафином и пр.) графит оказывается очень полезным генераторным (а так же индикаторным) электродом. [c.208]

    Хемосорбцией называют адсорбцию, происходящую под действием специфических, главным образом валентных, химических сил. Хемосорбцию можно определить как процесс образования двумерного химического соединения, не идущий, в отличие от обычной химической реакции, в глубину объемной фазы. Рассмотрим в качестве примера соединения, образующиеся при хемосорбции на угле и графите. В результате окисления поверхностных атомов С образуются, в зависимости от условий, те или иные поверхностные оксиды, изображенные следующими формулами  [c.127]


    Эта теория в течение многих лет была предана почти полному забвению в результате критики Брунауэра, считавшего, что эффект поляризации недостаточно велик. Однако расчеты поверхностного потенциала, выполненные за последние годы, а учетом сил электрического изображения, показали, что при адсорбции органических молекул и благородных газов на металлах, графите, оксиде алюминия и др. возникают достаточно высокие Дф (до 0,8 В). [c.165]

    Графит — более пористый материал, чем уголь. Это способствует большей адсорбции хлора и устойчивости [c.89]

    Все адсорбенты можно разбить на два основных типа гидрофильные, хорошо смачивающиеся водой, и гидрофобные, которые не смачиваются водой, но смачиваются неполярными органическими жидкостями. К гидрофильным адсорбентам относятся силикагель, глины, пористое стекло. Их не- следует применять при адсорбции растворенных веществ из водных растворов, так как они лучше адсорбируют растворитель — воду. Эти адсорбенты целесообразнее использовать при адсорбции из неводных растворов. Гидрофобные адсорбенты — активный уголь, графит, тальк — хорошо адсорбируют вещества из водных растворов. [c.169]

    Свободный углерод встречается в виде двух простых веществ — алмаза и графита. С некоторой натяжкой (ввиду наличия примесей) к этим двум формам можно прибавить и третью — так называемый аморфный углерод, важнейшими представителями которого являются сажа и древесный уголь. По внешним свойствам алмаз резко отличается от обеих других модификаций. Он бесцветен, прозрачен, имеет плотность 3,5 г/см и является самым твердым из всех минералов. Графит представляет собой серую, непрозрачную и жирную на ощупь массу с плотностью 2,2 г/см . В противоположность алмазу он очень мягок— легко царапается ногтем и при трении оставляет серые полосы на бумаге. Аморфный углерод по свойствам довольно близок к графиту. Плотность его колеблется обычно в пределах 1,8—2,1 г/см . У некоторых разновидностей аморфного углерода сильно выражена способность к адсорбции (т. е. поглощению на поверхности) газов, паров и растворенных веществ. [c.292]

    Резко выраженная селективность и необратимость адсорбции высокомолекулярных битумных веществ на графите и коксе благоприятствует химической ассоциации, приводящей к образованию из них кокса и увеличению его выхода. [c.173]

    Ввиду того, что равновесие в системе графит - водород сильно зависит от температуры, причем с повышением температуры количество метана уменьшается и при 1000 °С близко к нулю, возможен перенос углерода из мест с более низкой температурой в места с более высокой температурой (где углерод может осаждаться). При взаимодействии с диоксидом углерода направление переноса массы углерода имеет обратное направление - от более горячих мест к менее горячим. Водород не образует с графитом слоистых соединений. Хемосорбция водорода происходит по активным местам, на что указывает полное прекращение хемосорбции водорода после адсорбции кислорода на поверхности графита при температуре жидкого азота. При повышенных температурах водород реагирует с адсорбированным на графите кислородом, что является эффективным способом удаления поверхностных оксидов с графита, т.е. методом очистки его поверхности. [c.127]

    Смачиваемость твердых тел феноло-формальдегидной смолой изучали на воздухе. Для всех исследованных твердых поверхностей является общим тот факт, что эти поверхности покрыты слоем кислорода в основном за счет адсорбции, либо окисления. Адсорбция кислорода на алмазе и графите на воздухе при комнатных температурах и выше неоднократно подтверждалась экспериментально [4]. Металлы на воздухе также покрыты слоем физически и химически сорбированного кислорода. Этим общим свойством исследованных твердых поверхностей, по-видимому, можно объяснить одинаковую смачиваемость их феноло-формальдегидной смолой. Смачиваемость и адгезия в исследованных системах должна, очевидно, определяться установлением связей между кислородом твердой поверхности и гидроксильными группами смолы. Деструкция смолы приводит к некоторой потере гидроксильных групп [6, 7, 8], что сказывается на ухудшении смачиваемости (см. табл. 2). [c.127]

    Исследовали равновесие в системе графит с различной степенью совершенства кристаллической решетки — примеси металлов (железо, медь, марганец и магний) в газовой фазе. Углеродные материалы насыщали примесями методом адсорбции из газовой фазы в одинаковых условиях (при постоянных р, Т и т). [c.229]

    Показано, что при одинаковых условиях, адсорбция переходных металлов обратно пропорциональна среднему диаметру кристаллов углеродных материалов. Разность концентраций примесей при максимальном различии степени совершенства кристаллической решетки составляет 2 порядка (стеклоуглерод и естественный графит). Удельная концентрация адсорбированных атомов на боковой призматической поверхности кристаллов — величина постоянная для каждого металла и составляет сотые доли процента к количеству ненасыщенных углеродных атомов на этой поверхности. Табл. 3, рис. 1. [c.229]


    При хемосорбции образуются химические связи, поэтому она более специфична, чем физическая адсорбция. Однако провести четкое различие между этими двумя типами адсорбции в пограничных случаях невозможно. Связывание при хемосорбции может быть настолько прочным, что хемосорбированное вещество уже нельзя выделить в первоначальном виде. Например, когда кислород адсорбируется на графите, при [c.249]

    Различие в данных для адсорбции ионов на углях, саже и графите обусловлено особенностями кристаллической структуры этих мaтepиaлoв. Активированный уголь обладает большой концентрацией разорванных связей, которые определяют его высокую адсорбционную способность. На графите адсорбция происходит в основном только на боковых гранях, что обусловливает малую адсорбционную способность. Сажа занимает промежуточное положение между графитом и активированным углем. Изотропный пироуглерод в определенной степени моделирует периферийные группировки неароматического углерода, в то время как анизотропный пироуглерод моделирует ароматические графитоподобные области в дисперсных углеродных материалах. [c.77]

Рис. XVIII, 13. Зависимость теплоты адсорбции (С а) и изменения химического потенциала —Л х от заполнения поверхности при адсорбции аргона на графите Рис. XVIII, 13. <a href="/info/1333347">Зависимость теплоты адсорбции</a> (С а) и <a href="/info/939138">изменения химического потенциала</a> —Л х от <a href="/info/4503">заполнения поверхности</a> при <a href="/info/301041">адсорбции аргона</a> на графите
    В таблице используются также следующие условные обозначения Ь — адсорбционный коэффициент С — концентрация Кр — константа равнойесия реакции р — парциальное давление Q — теплота адсорбции г — скорост реакции 5 — удельная поверхность катализатора 5общ — общая удельнай поверхность катализатора х — степень превращения. Другие обозначения объяснены в десятой графе та.блицы. Верхние числовые индексы при г, к я Ь — температуры, при которых бКли определены указанные величины. [c.445]

    Следует отметить, что русские ученые разработали альтернативный путь для вычисления взаимодействия диэлектриков (Лившиц, 1955, 1956 Дзиазлошинский и др., 1960). Использование этого метода для вычисления энергий взаимодействия коллоидных частиц требует знаний диэлектрических свойств в пределах широкой области частот — данных, которые отсутствуют в настоящее время для многих веществ. Поэтому химики-коллоидники вынуждены прибегать к грубым приближениям, предлагаемым теорией Лондона. Однако эта теория разработана довольно хорошо в применении к дальнедействующим силам между отшлифованными поверхностями, поверхностной энергии неполярных жидкостей и энергии адсорбции простых неполярных молекул на твердых телах — например, бензол на графите (Киселев, 1965). Можно с уверенностью предположить, что эта теория дает правильный порядок величины энергии взаимодействия коллоидных частиц. [c.95]

    Адсорбция аргона на графите при более высоких заполнениях сходна с огшсанной выше адсорбцией азота на монокри-сталлической меди [39а]. В этом случае вандерва1альсовы силы [c.111]

    Во всех других случаях взаимное отталкива(Ние индуцированных Д11[10лей и взаимное притяжение под влиянием сил Ваи-дер-Ваал1 ,са, оставаясь сами по себе довольно слабыми, уравновешивают друг друга при адсорбции газов на угле и на графите, вследствие чего теплота адсорбции оказывается практически независимой от степени заполнения. Активные центры оказывают заметное влияние на теплоту адсорбции лишь при очень низких зна Чениях . При небольших заполнениях наблюдаются более высокие теплоты адсорбции, которые быстро падают с возрастанием и затем становятся практически постоянными [17, 176]. [c.112]

    Характерным для натрия является его адсорбция на поверхности и в порах неграфитирующейся и предпочтительное, но очень слабое внедрение в графитирующуюся матрицы. МСС Na gn имеет большее отношение Na/ с увеличением числа дефектов а матрице. Число дефектов можно регулировать температурой термообработки. В связи с этим хорошо упорядоченный бездефектный графит образует МСС очень высоких ступеней. [c.264]

    В работах Тюрина Ю. М. с сотр. предпосылкой интерпретации общности адсорбционных явлений для соединений различной природы и полиэкстремального характера адсорбции при высоких анодных потенциалах явились основы теории электрокапиллярности для необратимых электродов (Б. М. Графов, Э. В. Пе-кар). Такие представления развиты на примере электродной ре- [c.122]

    В случаях, когда > X,, т. е. энергия взаимодействия адсорбент — адсорбат больше энергии взаимодействия адсорбат — адсорбат, изотерма адсорбции выпукла и относится к типу II или IV (например, адсорбция I4 на силикагеле). Если же энергия взаимодействия адсорбат — адсорбат больше теплоты адсорбции (X > д,), например, при адсорбции воды на графите, ТО изотерма адсорбции вогнута и относится к типу III или V. [c.222]

Рис. 47. Зависимость чистой теплот адсорбции от количества адсорбированного вещества для (СзНз гО (/) С<Н,о (//) на силикагеле (а) и графи тированной саже (б). Рис. 47. Зависимость <a href="/info/301238">чистой теплот адсорбции</a> от количества адсорбированного вещества для (СзНз гО (/) С<Н,о (//) на силикагеле (а) и графи тированной саже (б).
    Другой характер адсорбции наблюдается на графите и коксе. В этом случае цвет люминесцентного битумного раствора меняется в сторону голубых и фиолетовых оттенков. Это свидетельствует о том, что из раствора избирательно сорбируются наиболее тяжелые составные части. Попытка отмыть сорбируемое вещество оказалась неудачной, в раствор полностью перешли только петролены, т. е. самые легкие битумные вещества. [c.91]

    Совершенно другой характер носит адсорбция битумных веществ на графите и коксах. В результате адсорбции на них цвет люминесцетного битумного раствора резко изменяется в сторону голубых и фиолетовых оттенков. Это свидетельствует о селективной адсорбции из раствора веществ с большим молекулярным весом. Попытка отмыть адсорбированные вещества не дала положительного результата, так как в растворитель полностью перешли только петролены. [c.173]

    Активированным углем называется уголь с высокой адсорбционной способностью. Это пористый адсорбент, скелет которого состоит из сеток шестичленных углеродных колец, менее упорядоченных, чем в графите, и ковалентно связанных с углеродными радикалами, водородом, а иногда и с кислородом. Активированные угли хорошо адсорбируют углеводороды и их производные, хуже—аммиак, низшие спирты и особенно плохо воду. Активированные угли обладают неоднородной поверхностью и высокой пористостью. У активированных углей имеются микропоры размером 1—2 нм с сильноразвитой удельной поверхностью (до 100 м г), поры размером 5—50 нм с поверхностью 100 м г и макропоры размером более 100 нм и малой удельной поверхностью 1 м 1г. Макропоры служат как бы транспортными каналами, подводящими молекулы адсорбируемого вещества к внутренним частям зерен активированного угля в порах средних размеров (5—50 нм) происходит адсорбция групп молекул (полимолекулярная адсорбция) и капиллярная конденсация паров и, наконец, наиболее сильная адсорбция идет в микропорах. [c.234]

    К числу перспективных ионитов, обладающих высокими термической и химической стойкостями, как мы уже говорили ранее, относятся окисленный графит [9, 38], окисленные и азотсодержащие угли. Адсорбция электролитов окислснн1) м углем была исследована М. М. Дубининым еще в 1929 г. [39], но только в последнее премя был установлен ионообменный характер подобной адсорбции и разработаны рекоме1щации для ее практического применения [-Ю— 14]. [c.192]

    На рис. 2,18 представлена изотерма адсорбции метиленовой сини на саже сферой из водного раствора при 20 °С [30]. По величине адсорбции, соответствующей горизонтальному участку, легко определить удельную поверхность адсорбента, если известен размер площадки, приходящейся на одну молекулу красителя. При горизонтальной ориентации на поверхности молекула метиленовой сини должна занимать площадку 135 А , при вертикальной — 75 А . В действительности площадка, приходящаяся на одну молекулу метиленовой синп, при адсорбции на углеродистых поверхностях (графите, графитированной, и неграфитиро-ванной саже) колеблется от 78 до 130 А . [c.54]

    Если улавливание производить из потока газа, не содержащего кислород, поглощение сернистого ангидрида происходит по законам физической адсорбции и при десорбции активность адсорбента полностью восстанавливается. Изотермы адсорбции сернистого ангидрида на активном угле, но данным Анурова, характеризует рис, 14,2. Теплота адсорбции сернистого газа в среднем составляет (в кДж/моль) па силикагеле 23, на графите 30, на активном угле 44, на активцых полукоксах до 42 [2]. Однако реальные технологические и вентиляционные газы в подавляющем большинстве случаев — кислородсодержащие. [c.272]

    Особенность метода газотвердофазной (газоадсорбщюнной) фомато-графии (ГАХ) в том, что в качестве неподвижной фазы применяют адсорбенты с высокой удельной поверхностью (10—1000 м т" ), и распределение веществ между неподвижной и подвижной фазами определяется процессом адсорбции. Адсорбция молекул из газовой фазы, т. е. концентрирование их на поверхности раздела твердой и газообразной фаз, происходит за счет межмолекулярных взаимодействий (дисперсионных, ориентационных, индукционных), имеющих электростатическую природу. Возможно образование водородной связи, причем вклад этого вида взаимодействия в удерживаемые объемы значительно уменьшается с ростом температуры. Комплек-сообразование для селективного разделения веществ в ГАХ используют редко. [c.296]

    Применяется для газовой и жидкостной адсорбционной хроматографии ( лекулярная адсорбция), для ионообменной и осадочно-сорбционной хрома-графии из водных растворов (ионный обмен и осаждение), а также в качесп инертного носителя при жидкостной распределительной хроматографии. [c.192]


Смотреть страницы где упоминается термин Графит адсорбция: [c.492]    [c.557]    [c.74]    [c.171]    [c.125]    [c.454]    [c.383]    [c.324]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы



© 2025 chem21.info Реклама на сайте