Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Графит магнитные свойства

    По своим магнитным свойствам графит относится к группе аномальных диамагнетиков. Магнитная восприимчивость графита х< О зависит от температуры и имеет абсолютное значение порядка 20-10 .. Анизотропия этой характеристики монокристаллов графита при измерениях перпендикулярно и параллельно слоям велика хх = —21,0 -10 и хи = —0,3-10-.  [c.38]

    Таким образом, на основе положений, развитых в феноменологической теории магнетизма, можно удовлетворительно объяснить экспериментальные результаты по исследованию влияния отжига на магнитные свойства синтетических алмазов, полученных в системе N4—Мп—графит. [c.446]


    Такнм образом, совокупность магнитных свойств N1—Мп-спла-вов с учетом условий синтеза и температурной предыстории синтетических алмазов, полученных в системе N1—Мп—графит, позволяет удовлетворительно объяснить ряд особенностей в изменении их намагниченности при термообработке. Отсутствие максимума намагниченности после отжига при 970 К у ряда кристаллов алмаза свидетельствует об однородности (по объему) входящих во включения различных N1—Мп-сплавов. Сохранение магнитного момента у части образцов после высокотемпературного отжига указывает на недостаток Мп во включениях. [c.447]

    Экспериментально установлено, что ступенчатый высокотемпературный отжиг (до 1220 К с выдержкой 300 с) специально отобранных высококачественных диэлектрических кристаллов синтетического и природного алмаза практически не влияет на их диэлектрические характеристики. Для большинства же алмазов, синтезированных в системе металл — графит, наблюдается широкий максимум для е и минимум для tgб при отжиге в интервале температур 820—1220 К (рис. 164). Размытость экстремумов в зависимостях ей 156 от температуры отжига обусловлена тем, что процесс гомогенизации состава включений при отжиге в больших партиях порошков алмаза охватывает широкий температурный интервал из-за индивидуальных особенностей формы, размеров и фазового состава включений в отдельных кристаллах. Следует отметить, что именно в этом температурном интервале отжига синтетических алмазов наблюдаются изменения магнитных свойств кристаллов (см. гл. 9). [c.454]

    Селвуд и сотр. [323] показали, что за ходом адсорбции молекулярного кислорода на графите можно проследить, измеряя парамагнитную восприимчивость кислорода. Таким образом можно также определить и адсорбцию других парамагнитных газов, таких, например, как окись азота. Этот метод (т. е. измерение восприимчивости адсорбата) имеет, естественно, ограниченную область применения, так как большинство газов, адсорбирующихся на гетерогенных катализаторах, являются диамагнитными. Кроме того, для изучения магнитных свойств самого адсорбата гораздо лучше использовать метод магнитного резонанса (см. предыдущий раздел). [c.122]

    Книга представляет собой систематизированный обзор исследований, относящихся к перспективному жаропрочному материалу — графиту. С большим знанием дела показано современное состояние проблемы, собраны разнообразные данные о графите. Рассмотрены вопросы строения кристаллической решетки и процессы, происходящие в ней при графитизации механические, тепловые и электрические свойства графита влияние облучения на различные свойства графита структура связей в графите магнитная восприимчивость окислы графита, их структура и физико-химические свойства реакции графита с газами и др. В большом количестве таблиц и графиков приведен справочный материал. [c.4]


    В случае графита некоторые магнитные свойства углерода поддаются более отчетливой интерпретации, чем такие электрические свойства, как удельное сопротивление и его температурный коэффициент. Это обстоятельство объясняется тем, что такая величина, как магнитная восприимчивость поликристаллического тела, является лишь суммой восприимчивостей всех электронных орбит, которые содержатся в его структуре. Разница между многоядерными ароматическими углеводородами, обособленными друг от друга в кристалле (подобно многоядерным сеткам, связанным вместе в углеро-дах) силами отталкивания, и более крупными плоскими многоядерными сетками в почти идеальном графите заключается только в том, что различным членам при суммировании магнитных свойств приписывается неодинаковая относительная роль и вместе с тем не требуется добавления многочисленных членов, учитывающих влияние границ. [c.87]

    Фактически движение электронов в кристаллич. решетке металла или полупроводника значительно сложнее, чем это описывается данной теорией. Чем сильнее отличается кристаллич. решетка металла от кубической, тем своеобразнее ее влияние на магнитные свойства свободных электронов. Вот почему именно такие металлы, как ЗЬ и В1, полупроводники, графит и др., кристаллизующиеся в гексагональной, ромбической и тригональной системе, обнаруживают аномально большой диамагнетизм и притом очень значительную анизотропию магнитных свойств. Так, у кристаллов графита диамагнетизм в направлении, параллельном оси, превосходит примерно в 6 раз диамагнетизм, перпендикулярный оси кристалла. [c.509]

    Как уже говорилось, так ое положение вызвано тем обстоятельством, что плотный поликристаллический углерод при образовании кристаллического соединения часто превращается в поликристаллический порошок. В этих условиях такие свойства соединений, как тепловое расширение, сжимаемость, твердость и электропроводность, могут определяться скорее границами между кристаллитами, чем свойствами собственно кристаллической решетки. Исследования межкри-сталлических границ указывают на то, что в некоторых случаях их влияние сводится, по-видимому, лишь к дополнительному эффекту [593]. К счастью, картина рентгеновской дифракции и величина магнитной восприимчивости вряд ли сильно меняются в результате превращения графита в поли-кристаллические порошки при образовании кристаллических соединений. Другая сложность заключается в том, что некоторая часть добавок может закрепиться в графите на дефектах структуры их вклад в количественные характеристики кристалла зависит от природы этих дефектов, которая может быть весьма различной и в любом случае с трудом поддается изучению. Эта неопределенность осложняет детальную интерпретацию ряда результатов [261, 407, 408, 411]. [c.160]

    Для улучшения эксплуатационных свойств и снижения стоимости в полимерные материалы часто вводят наполнители — твердые, жидкие и газообразные вещества, которые достаточно равномерно распределяются в объеме полимерной композиции и имеют четко выраженную границу раздела с непрерывной полимерной фазой [31]. Наибольшее распространение в производстве пластмасс получили твердые наполнители. Это, как правило, высокодисперсные порошки, волокна, гранулы, листы и т. п. При этом некоторые наполнители (графит, стекло, металлы) могут применяться в различном виде. В зависимости от характера взаимодействия с полимером наполнители условно делят на инертные (не изменяющие свойств полимера) и активные (упрочняющие, армирующие). Из органических порошкообразных наполнителей применяются целлюлоза, газовый канальный технический углерод, графит, политетрафторэтилен, поливинилхлорид и др. Группа неорганических наполнителей включает мел, каолин, тальк, слюду, кварц, оксиды металлов, гидроксид алюминия, фториды и сульфаты кальция, стронция и бария, порошки металлов и их сплавов (железа, меди, свинца, цинка, алюминия, бронзы, латуни), керамические магнитные порошковые материалы (ферриты). [c.58]

    Изотопы большинства элементов настолько сходны по химическим свойствам, что разделить их очень трудно и сложно. Разделение основывается главным образом на некотором различии в их физических свойствах. Наиболее широко применяется метод, основанный на так называемой магнитной сепарации. Ои заключается в том, что отклонение различных атомов (ионов) в магнитном и электрическом полях происходит различно в зависимости от массы, заряда и скорости движения. Такое разделение изотопов впервые начали осуществлять в сконструированном английским физиком Ф. Астоном (1919) приборе масс-спектро-графе, в мощных магнитных и электрических полях которого поток разделяется на отдельные пучки в зависимости от их массы и заряда (рис. 40). [c.104]

    В самом деле, например, оптические, электрические, магнитные и другие свойства тел сильно меняются при изменении физического состояния тела. Хорошо известно, что аморфный уголь, графит и алмаз — это видоизменения одного и того же элемента — углерода. Несмотря на все свое различие эти три тела в отношении химического (элементарного) состава тождественны и при сжигании образуют один и тот же углекислый газ. Что же у них общего Менделеев отвечает общим у них является наличие в их химическом составе одного и того же элемента — углерода С с постоянным для него атомным весом (С =12). Под именем элементов,— говорит он,— должно подразумевать те материальные составные части простых и сложных тел, которые придают им известную совокупность физических и химических свойств... Углерод есть элемент, а уголь, графит и алмаз суть тела простые [18, стр. 19]. [c.118]


    В данной работе изучались свойства полимеров, прогретых в течение 6 час. при 400° С/12 мм, полученных как с добавкой хлорного железа, так и без нее. Каталитические свойства вышеописанных полимеров сопоставлялись с каталитическими свойствами природных углеродистых полимеров активированным древесным углем и графитом. Активированный уголь и графит тш,ательно отмывались от парамагнитных примесей соляной кислотой, что контролировалось по величине удельной магнитной восприимчивости (х) и ее зависимости от напряженности поля после обработки образцов водородом при 400° С. Спектры ЭПР изученных вегцеств снимались на установке типа описанной в работах [3, 4]. Магнитная восприимчивость измерялась методом Фарадея в магнитных полях от 3000 до 4500 э. Удельная поверхность исследованных соединений определялась по адсорбции [c.304]

    Рассмотрим вкратце вопрос о природе адсорбционных взаимодействий. Взаимодействия, характерные для сил, действующих между молекулами газов, являются универсальными. Они определяются поляризуемостью и магнитной восприимчивостью или потенциалом ионизации этих молекул, их размерами и рядом других их свойств. С этой точки зрения адсорбент должен был бы влиять одинаково на разные углеводороды, если указанные выше их физические свойства близки. Рассмотрим, например, н. парафин и ароматический углеводород, содержащие равное число атомов углерода в молекуле — гексан и бензол. Потенциалы ионизации и средние поляризуемости у бензола и гексана близки. Но если в случае адсорбции на чистом графите, не содержащем поверхностных окислов, в соответствии с несколько большими значениями потенциала ионизации и средней поляризуемости сильнее адсорбируется гексан, то на кварце и силикагеле наблюдается обратное сильнее адсорбируется бензол. На рис. 1 показаны соответствующие абсолютные (рассчитанные на единицу поверхности) изотермы адсорбции паров бензола и гексана на поверхности графита и гидратированной поверхности кварца. [c.37]

    Для нагрева детали (катода) в электролите плотность тока на ее поверхности должна быть больще, чем на поверхности анода. Следовательно, поверхность нагреваемой детали (катода) должна быть несколько меньше поверхности анода. В электролитах могут нагреваться твердые проводники сталь, чугун, латунь, алюминий, графит и т. д. На условия нагрева металлов в электролитах влияет их теплопроводность и не влияют магнитные и электрические свойства. [c.215]

    Изучение магнитных свойств проводилось параллельно в Институте общей и неорганической химии АН СССР и Институте прикладной геофизики методами Гуи (напряженность поля 8000 эрстед) и Кюри-Шенево (напряженность поля до 554 эрстед). Для сравнения была измерена магнитная восприимчивость исходного угля, а также магнитная восприимчивость механической смеси угля с железным порошком (Кальбаум) в соответствующей концентрации. Результаты измерений приведены в табл. 1. В последней графе дана магнитная восприимчивость исследованных образцов в расчете на 1 г железа (xg) с внесением поправки на измеренную величину диамагнетизма угля. Приведенные в таблице значения степени заполнения поверхности железом вычислены так, как это делалось Клячко-Гурвичем и Кобозевым в их работе, т. е. в предположении, что поверхность покрыта слоем толщиной в один атом железа. Согласно данным этих авторов, степень заполнения поверхности 0.0006 отвечает максимуму удельной активности катализатора (т. е. активности, деленной на степень заполнения) при 450°. [c.207]

    В настоящей работе исследовались изменения магнитных свойств и структуры покрытий Со—Ni—Р в результате термообработки, проводился термогравиметрический анализ сплава и измерялись стандартные потенциалы покрытий магнитные свойства (коэрцитивная сила Не и отношение остаточной индукции к максимальной BrIBs) измерялись вибрационным магнитометром, фазовый анализ изучался по рентгенограммам, полученным на установке УРС-55, термогравиметрический анализ на деривато-графе Orion , стандартный потенциал в насыщенном растворе хлористого калия относительно насыщенного каломельного электрода при температуре 20° С с помощью компенсационной схемы. [c.85]

    Некоторые дополнительные сведения об электронных зонах графита можно получить из данных по изучению соответствующих свойств кристаллических соединений, Одна из причин, затрудняющих развитие таких исследований, заключается в том, что сильное расширение пространства между слоями в процессе образования кристаллических соединений вызывает, как правило, дробление поликристаллического графита, так что имеющиеся экспериментальные данные получены главным образом на поликристаллических порошках. К настоящему времени эта трудность преодолена [1065], и сейчас имеются данные по анизотропии электрических и магнитных свойств кристаллических соединений графита. При рассмотрении соединений с более высокой по сравнению с графитом электропроводностью (например, в случае соединений графита с щелочными металлами и бромом) следует использовать наиболее реальную модель графита, по которой графит имеет бесконечную кристаллическую решетку с электронными энергетическими зонами, соответствующими его квазиметалличе-ской природе. Вследствие упрощенного представления электронных зон для бесконечных гексагональных сеток (т. е. в случае двумерного приближения для идеального графита) функция распределения электронов N (е) по энергиям е приобретает вид, показанный на фиг. 35. При этом одну зону можно считать почти совершенно пустой, а другую — почти целиком заполненной. [c.177]

    Способность электронов к делокализации, хотя и в меньшей степени, чем у металлов, встречается у разнообразных органических соединений. Особенно легко проявляют способность к объединению я-электроны в ароматических соединениях и веществах с сопряженными связями. В результате такие соединения приобретают значительную металлоподобность — у них появляется высокая элект-ро- и теплопроводность, металлический блеск и другие присущие металлам свойства. Характерными в этом отношении являются графит, трифенилметановые красители, соединения с порфириновыми кольцами и т. п. В последнее время на основе теории нелокализо-ванной химической связи разработаны методы приготовления и получения синтетических высокополимеров, способных проявлять типичные электрические и магнитные свойства. [c.37]

    Структура твердого тела в зависимости от порядка расположения структурных единиц может представлять собой правильную пространственную структуру в кристаллических телах. Прн бесиорядочном расположении ССЕ образуется изотропная структура, характерная для гелей, студне] или стеклообразных тел. Анизотропное или изотропное состояние веществ имеют важное значение. В анизотропных веществах проявляется зависимость физико-химических свойств (механических, оптических, магнитных и т. д.) от выбранного направления. Например, графит легко расщепляется на слои вдоль определенной плоскости (параллельно этой плоскости силы сцепления между кристалла МП графита наименьшие). Поэтому на практике определяют свойства анизотропных тел вдоль главной оси симметрии (И) п перпендикулярно ей (I). Изотропное (аморфное) состояние характеризуется отсутствием строгой периодичности, присущей кристаллам изотропное вещество не имеет точки плавления. При иовышенип температуры аморфное вещество размягчается II переходит в л<идкое состояние постепеино. [c.129]

    Книга Г. Кёнига и В. Блекуэлла Теория электромеханических систем [86] посвящена объединению в целях теоретического анализа и синтеза весьма различных по своим свойствам и назначению элементов (электрические машины, электронные, магнитные и другие усилители, гидропреобразователи, гироскопы) , которое авторы основьшают не на применении известного метода аналогий, а на использовании одной из ветвей топологии - теории графов . Речь идет о стремлении выявить глубокую общность в математическом описании элементов различной физической природы , чтобы обеспечить применение строгих методов и их обоснованное упрощение. [c.10]

    Для удовлетворения указанных требований к объемным свойствам маслорастворимых ингибиторов выбирают те вещества, которые способны к поляризации системы. Это — микрокальцит (доломит), порошки металлов или их оксидов, дисульфид молибдена, графит, нитрит натрия (сегнетоэлектрик). Особенно сильно поляризуют ПИНС (и другие смазочные материалы) ферромагнитные материалы — мелкодисперсные частицы железа, никеля или кобальта. Получение тонких, модифицированных дисперсий наполнителей обеспечивается разными технологическими приемами. Используют струйные мельницы (в том числе во встречных потоках), коллоидные мельницы разных модификаций, эффективные магнитные реакторы-диспергаторы с вихревым слоем ферромагнитных частиц (АВС-100, АВС-150) ультразвуковые и магнитострикционные диспергаторы, дезинтеграторы, получившие значительное распространение в последнее время [117—122]. Тонкие дисперсии порошков металлов получают также электроискровым и электрохимическими методами 118], дисперсии карбонатов металлов — методом карбонатации 17, 18]. Для модификации поверхности наполнителей используют самые разнообразные гомогенизаторы — отечественные ультразвуковые типа АГС-6, ГАРТ-Пр, зарубежные типа Фирма и Корума и пр. [c.160]

    Систематическое изучение изменений свойств при графитизации углерода, полученного из различных органических молекул известной структуры, позволило сделать более определенные выводы [4]. В графите с грубыми дефектами общая магнитная восприи.мчивосгь складывается из диамагнитной и парамагнитной компонент структуры. Инородные атомы, как, например, кислород, могут оказывать существенное влияние на промежуточных стадиях образования графита [c.46]

    В качестве специальных ферромагнитных материалов применяют магнетит, карбонильное железо, ферриты и др. Свойства таких магнитных материалов приведены в табл. 1.7. Цифры во второй графе таблицы показывают, во сколько раз примерно повысится индуктивность катушки с сердечником по сравнению с катугакоГ без сердечника. [c.22]

    Такие сво 1ства, как, например, оптические и даже электрические или. магнитные, конечно, не могут послужить опорой для системы, потому что одно и то же тело. может представлять в этом отношении различия гро.мад-ные, смотря по тому состоянию, в котором оно находится. Достаточно припомнить в этом отношении графит и алмаз, обыкновенный и красный фосфор, кислород и озон... А между тем, всякий из нас понимает, что при всей перемене в свойствах простых тел, в свободном их состоянии, нечто остаётся постоянным и при пере.ходе элементов в соединения это нечто —. материальное и составляет характеристику соединений, заключающих данный элемент. В этом отношении поныне известно только одно числовое данное — это именно атомный вес, свойственный элементу. Вот по этой-то причине я и старался основать систему на величине атомных весов эле.ментов . [c.67]


Смотреть страницы где упоминается термин Графит магнитные свойства: [c.309]    [c.286]    [c.509]    [c.26]    [c.181]    [c.116]    [c.93]    [c.124]    [c.754]    [c.102]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графит свойства

Графой

Графы



© 2025 chem21.info Реклама на сайте