Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам пятивалентный

    А. Вернером. Добавочные валентности позволяют многим химическим элементам присоединять по два, четыре, шесть, восемь атомов, ионов или молекул, что не соответствует числу обычных химических связей элементов. Например, двухвалентная медь образует комплексный катион с четырьмя молекулами аммиака [Си (NH J (синего цвета), двухвалентный кобальт образует синий комплекс с четырьмя роданид-ионами [ o(S N) l , четырехвалентное олово образует неокрашенный комплекс с шестью хлорид-ионами [Sn" 1J- , пятивалентный вольфрам образует комплекс с восемью цианид-ионами [W ( N) " и т. д. В таких комплексных соединениях можно выделить атомы-ком-плексообразователи, или центральные атомы (в нашем примере это медь, кобальт, олово, вольфрам), и атомы, ионы или молекулы, которые группируются вокруг них. Их называют лигандами (аддендами). В наших примерах это аммиак, цианид-ион, хлорид-ион, нитрит-ион, роданид-ион. [c.91]


    Молибден может быть определен в присутствии шестивалентного хрома (0,004—0,009 г). В этом случае осадок необходимо прокаливать до МоОз. Шестивалентный вольфрам осаждается реагентом из кислых растворов и мешает определению молибдена. Двухвалентный кобальт (0,1 г), никель (0,15 г) и медь (0,12 г) не мешают полученный в этом случае осадок промывают сначала 0,2 N НС1, затем 0,02 А/ НС1. В присутствии трехвалентного железа (0,8 г) и пятивалентного ванадия (0,008 г) прибавляют 1—2 г комплексона III. [c.166]

    Быстрый и достаточно точный фотометрический метод определения около 1 % Мо в простых и легированных сталях, содержащих никель, хром,. вольфрам и другие элементы, включает экстракцию роданидных соединений пятивалентного молибдена диэтиловым эфиром [601]. Вольфрам удерживают в растворе добавлением винной или лимонной кислоты. [c.221]

    Следы мышьяка, цинка, железа, молибдена и других элементов можно определять в вольфраме [590, 591]. При определении 1,4 1,5 и 2,0 мкг Мо в 0,1 г вольфрама было найдено соответственно 1,2 1,5 и 1,7 мкг Мо. Непосредственному определению молибдена мешают образовавшиеся при облучении потоком нейтронов радиоактивные изотопы вольфрама с относительно большим периодом полураспада. Поэтому сначала осаждают вольфрам и молибден а-бензоиноксимом из кислого раствора, затем отделяют молибден от большей части вольфрама экстракцией роданидных соединений пятивалентного молибдена бутилацетатом. Затем осаждают сульфид молибдена после добавления тартрата для удержания вольфрама в растворе. [c.244]

    Титриметрический метод. Титрование раствором соли Мора. Четырехвалентный ванадий окисляют в сернокислой среде перманганатом калия до пятивалентного состояния. Затем титруют раствором соли Мора с применением индикатора — фенилантраниловой кислоты. Определению мешает вольфрам. [c.341]

    Молибден и вольфрам в растворе, приготовленном для анализа, находятся обычно в шестивалентном состоянии и в этом случае образуются лишь слабо окрашенные роданиды. Наиболее интенсивно окрашенное соединение роданида с молибденом получается при восстановлении его до пятивалентного. Семивалентный рений также не образует интенсивно окрашенного комплекса с роданидом. Однако в присутствии восстановителей роданид образует с рением желтое или красное соединение, в зависимости от концентрации рения. По поводу валентности рения в роданидном комплексе данные разных авторов противоречивы. По-видимому, рений в максимально окрашенном роданидном комплексе является пяти- или шестивалентным. [c.250]


    Сильные восстановители, например титан (III), восстанавливают молибден до четырех- и трехвалентного при этом окраска раствора сильно ослабляется и при полном восстановлении до молибдена (111) почти исчезает. При восстановлении до пятивалентного состояния вольфрам дает интенсивно окрашенный роданидный комплекс, и при дальнейшем восстановлении окраска почти не ослаб  [c.250]

    Еще более заметно подобное внешнесферное влияние при некоторых других системах. Так, олово (IV) и железо (II) заметно влияют на спектр поглощения роданидного комплекса молибдена [84]. Значительные трудности возникают при определении молибдена в присутствии вольфрама [85]. В частности, установлено, что вольфрамовая кислота не выпадает в осадок в присутствии молибдата кроме того, вольфрам оказывает влияние на скорость восстановления молибдена до пятивалентного, который образует окрашенный роданид. Ионы алюминия, не образующие прочных комплексов с роданид-ионами, снижают оптическую плотность раствора роданида молибдена [86]. [c.364]

    Пятивалентный вольфрам как восстановитель в потенциометрических титрованиях. II. Определение солей церия(1У), бромата и феррицианида. [c.186]

    Сильные восстановители, например титан (III), восстанавливают молибден до четырех- или трехвалентного при этом окраска раствора сильно ослабляется и при полном восстановлении молибдена почти исчезает. При восстановлении до пятивалентного состояния вольфрам дает интенсивно окрашенный родановый комплекс, и при дальнейшем восстановлении окраска почти не ослабляется. Эта разница в свойствах молибдена и вольфрама позволяет определить последний в присутствии молибдена. Обесцвечивание роданида железа в присутствии восстановителей дает возможность определять молибден или вольфрам в присутствии даже больших количеств железа. [c.168]

    Гринберг [766] подтвердил возможность разделения 0,1 мг W и 0,01—0,05 мг Мо экстракцией в форме соединения с толуол--3,4-дитиолом. Шестивалентный молибден восстанавливают и экстрагируют в среде 4 N НС1 при помощи 20%-ного раствора Sn 2 в НС1 (1 1)] при 20° С. Вольфрам в этих условиях практически не экстрагируется даже при 20-минутном встряхивании. Затем повышают концентрацию НС до 9—11 N, прибавляют раствор соли трехвалентного титана и экстрагируют образовавшееся соединение пятивалентного вольфрама с толуол-3,4-дитио-лом. [c.148]

    Рений, ванадий, пятивалентный мышьяк не дают окрашивания. Вольфраматы мешают вследствие образования вольфрамовой сини при добавлении Sn lj. Вольфрам маскируют винной кислотой. При добавлении к капле исследуемого раствора капли 2 N винной кислоты, 5—6 капель 3%-ного этанольного раствора а.а -дипиридила и капли раствора Sn b можно обнаружить еще 0,8 мкг Мо в присутствии 550-кратных количеств вольфрама. [c.106]

    Для разделения вольфрама и молибдена Марбрэкер [1036] восстанавливал шестивалентный вольфрам при помощи солянокислого раствора ЗпСЬ до нерастворимого окисла синего цвета молибден при этом оставался в растворе в пятивалентном состоянии. Осадок синего цвета отфильтровывали, промывали 5%-ной соляной кислотой и прокаливали до трехокиси вольфрама. Из фильтрата выделяли олово металлическим гранулированным цинком, окисляли трехвалентный молибден избытком сульфата трехвалентного железа и оттитровывали двухвалентное железо раствором перманганата калия.-При недостатке раствора ЗпСЬ вольфрам полностью не выделялся в осадок избыток [c.117]

    Это приводит к уменьшению второго скачка потенциала. Изучение титрования шестивалентного молибдена с различными электродами из материалов, на поверхности которых наблюдается высокое перенапряжение водорода (металлическая ртуть, вольфрам, графит, тантал), показало следуюш,ее [58] второй скачок потенциала при титровании молибдена в среде серной кислоты резко возрастает в случае замены платинового электрода вольфрамовым и графитовым. При титровании с ртутным электродом наблюдается один большой скачок потенциала, со-ответствуюш,ий окончанию восстановления молибдена до трехвалентного состояния. Кроме того, с ртутным электродом наблюдается еш,е один скачок потенциала до того, как молибден перейдет в трехвалентное состояние. Положение этого скачка изменяется от титрования к титрованию и связано с моментом исчезновения ранее образовавшейся пленки на поверхности ртути. Скачка потенциала по окончании восстановления шестивалентного молибдена до пятивалентного не наблюдается. Это может быть объяснено тем, что ртуть в сильнокислой среде восстанавливает небольшие количества шестивалентного молибдена до пятивалентного с образованием эквивалентных количеств ионов одновалентной ртути (на поверхности ртути наблюдается образование пленки). Реакция протекает на поверхности электрода. При титровании раствором соли двухвалентного хрома происходит восстановление как молибдена, так и образовавшихся ионов одновалентной ртути (пленка на ртути растворяется), поэтому наблюдается скачок потенциала в точке, соот-ветствуюш,ей окончанию восстановления молибдена до трехвалентного состояния. Очевидно, ртутный индикаторный электрод может применяться только при титровании шестивалентного молибдена в чистых растворах и в присутствии таких элементов, [c.197]


    Молибден отделяют от мешающих элементов (железо и др.) прн помощи а-бензоиноксима, как описано на стр. 122 [1539]. Вместе с молибденом осаждаются также вольфрам, палладий, шестивалентаый хром, пятивалентный ванадий и тантал. Палладий и тантал не мешают последующему определению молибдена, а влияние вольфрама, хрома и ванадия может быть легко устранено. Другие элементы не осаждаются а-безноинокстом. [c.233]

    Водный раствор, содержащий вольфрам, выпаривают с серной и азотной кислотами для разложения органических веществ, затем добавляют сульфат титана, чтобы восстановить вольфрам до пятивалентного состояния. При добавлении соляной кислоты и дитиола при нагревании до 80—90 С образуется сине-зелепый комплекс вольфрама с дитиолом, который затем экстрагируют четыреххлористым углеродом, II измеряют оптическую плотность экстракта при длине волны 640 нм. [c.195]

    Изученные соединения пятивалентных элементов рассматриваемой подгруппы сравнительно немногочисленны. Пятихлористый вольфрам может быть получен повторной перегонкой W lй в токе водорода, пятихлористый молибден — нагреванием порошка Мо в токе хлора. Как W l5 (т. нл. 248° С, т. кип. 276° С), так и МоОб (т. пл. 194° С, т. кип. 268° С) представляют собой зелеповато-чор- [c.76]

    Прекрасным методом предварительного отделгиия мышьяка, встречающегося в малых количествах во многих материалах, является осаждение его аммиаком в виде основного арсената железа. Этот метод применяется при анализе медных и молибденовых руд. В этих случаях разложение исходного материала ведут так, чтобы весь мышьяк получился в пятивалентной форме, затем прибавляют 0,1—0,2 г соли железа (III) (если последнее не присутствует уже в растворе в достаточном количестве) на каждые 10 мг мышьяка и осаждают, как указано в гл. Молибден (стр. 360). Ряд других элементов селен, теллур, фосфор, вольфрам, ванадий, олово и сурьма — также осаждается этим методом. Применение соли алюминия вместо соли железа (III) не дает таких удовлетворительных результатов. [c.308]

    Применяя, например, прибор, подобный предложенному Kelley (стр. 231), погружают каломельный и платиновый электроды в холодный разбавленный азотно-сернокислый раствор, содержащий ванадий в пятивалентном состоянии, и титруют раствором сульфата железа (II), пока луч света, отраженный от зеркальца гальванометра, после некоторого периода покоя не придет снова в движение. Затем прибавляют титрованный раствор хромата калия эквивалентной концентрации до тех пор, пока двигающийся обратно к своему прежнему положению луч света на некоторое время не остановится. После этого снова прибавляют раствор сульфата железа (II) до заметного смещения луча. Израсходованный объем раствора хромата вычитают из введенного объема раствора сульфата железа (II) и содержание ванадия зычисляют, основываясь на том, что IFe соответствует IV. Хром и вольфрам определению не мешают. [c.515]

    При действии восстановителей на растворы молибденовых соединений образуются так называемые синие окислы , или молибденовая синь , представляющие собой соединения, содержащие шести- и пятивалентный молибден. Обычно образуются рентгеноаморфные продукты, однако Глемзер получил и кристаллические осадки гидратированных окислов, которым он приписывает формулы М08015(0Н) 16, Мо40п(0Н)2 и М0204(0Н)2. Эти соединения, в противоположность аморфным, устойчивы в щелочах и в растворах аммиака [38]. Реакция образования молибденовой сини — весьма чувствительная реакция на молибден (значительно более чувствительная, чем аналогичная реакция на вольфрам), широко используется в различных вариантах как для определения самого молибдена, так и элементов, связанных с ним в комплексные соединения (например, фосфора в комплексной фосфорномолибденовой кислоте, германия в германомолибденовой кислоте и т. д.). Окислительно-восстановительный потенциал системы Мо /Мо равен +0,5 в, поэтому для восстановления можно применять растворы двухвалентного олова или трехвалентного титана ( о систем 8п +/3п2+ и Т1 +/Т1 + менее положительны) или различные менее электроположительные металлы — олово, висмут, свинец, кадмий, цинк и др., а также некоторые органические соединения, например глюкозу. [c.54]

    В. М. Тараян и Е. Н. Овсепян рекомендуют метод потенциометрического титрования молибдена раствором перхлората закиси ртути закись ртути, взаимодействуя с добавленным к титруемому раствору молибдена роданистым калием, образует ртутнородановый комплекс наряду с восстановлением до металлической ртути. Последняя восстанавливает молибден до пятивалентного. Конец титрования определяется по скачку потенциала. Вольфрам не мешает определению молибдена этим методом, так как он не восстанавливается перхлоратом закиси ртути. [c.90]

    В. И. Кузнецов и Г. В. Мясоедова 207] разработали метод отделения следов молибдена от вольфрама при помощи метода двух реактивов , заключающегося в том, что сперва молибден соосаждают вместе с другими элементами таннином и метил-виолетом ( органические соосадители ), а затем, после озоле-ния и растворения осадка, снова осаждают молибден, но уже не таннином, а роданидом и метилвиолетом, создавая виннокислую среду, в которой вольфрам не осаждается. Этим методом удается определять молибден в присутствии 400 000-кратного избытка вольфрама — например 2,5 мкг молибдена при 1 г вольфрама. Этот же метод позволяет концентрировать малые количества молибдена из больших объемов, например из природных вод. Методы хроматографического разделения молибдена и железа разрабатывались Ф. М. Шемякиным и И. П. Харламовым [202, 208], использовавшими предварительные данные других авторов. Это разделение хорошо проходит на сульфоугле, поглощающем молибден и пропускающем железо. После промывания колонки через нее пропускается раствор едкого натра, выщелачивающий поглощенный сульфоуглем молибден. Ш елочной раствор молибдата переводят в сернокислый и титруют его перманганатом после предварительного восстановления молибдена но пятивалентного при помощи амальгамированного цинка. [c.90]

    НОЛЯХ сжигают до окиси металла. Фактор пересчета оксихинолятов на металл очень мал, что повышает их значение для весовых определений. Оксин не является селективным реактивом, им можно определить в общем 31 элемент. Однако соответствующим выбором условий кислотности и, если было необходимо, прибавлением комплексообразующих веществ с течением времени было разработако большое число методов определения различных катионов при их совместном присутствии. Селективность оксина значительно повышается при добавлении этилендиаминтетрауксусной кислоты. Применение кдмплексона для маскирования различных катионов значительно расширило возможности применения оксина для определения и разделения разных металлов. В слабокислой среде из комплексонатов большинства катионов соответствующие элементы оксином не осаждаются. Исключение составляют только некоторые элементы побочных групп периодической системы, например шестивалентные молибден и вольфрам и пятивалентный ванадий, не образующие прочных комплексов. В табл. 16 приведены катионы, осаждаемые 8-оксихинолином. [c.110]

    Вольфрам образует достаточно прочные комплексы с ЭДТА в пятивалентном состоянии и весьма слабые в шестивалентном [111, 114, 115]. Оптимальная область существования комплексоната вольфрама (V) соответствует pH 2—7. По аналогии с молибденом взаимодействие можно представить согласно схеме [c.100]

    Однако шестивалентный вольфрам в аналогичных условиях столь легко не восстанавливается. Соли четырехвалентного церия в кислой среде быстро восстанавливаются с образованием бесцветных соединений трехвалентного церия [38, 78]. Так называемая черная окись празеодимия, которой иногда приписывают формулу PГвO , количественно восстанавливается,гидразином до гидроокиси празеодимия при смешении горячих растворов обоих реагентов [79]. Соединения трехвалентного железа [27, 32, 42, 80, 81] и трехвалентного кобальта [82] при действии сульфата гидразина в кислой среде переходят в соответствующие соединения этих элементов в двухвалентном состоянии. Двуокись свинца восстанавливается до соединений двухвалентного свинца как в кислой, так и в щелочной среде [27, 32]. Гидразин бьш использован также для восстановления растворов, содержащих пятивалентный ванадий [6, 83, 84]. В зависимости от кислотности среды восстановление может приводить к образованию соединений либо четырех, либо трехвалентного ванадия [40]. [c.133]

    Как указано выше, сам ион родана является восстановителем, поэтому при стоянии растворов роданида железа они постепенно обесцвечиваются (быстрее в присутствин некоторых катализаторов). Молибден и вольфрам в растворе, приготовленном для анализа, находятся обычно в шестивалентном состоянии и в этом случае не дают окрашенных роданидов . Самое интенсивно окрашенное соединение роданида с молибденом получается при восстановлении его до пятивалентного. [c.168]

    Возможно [239] косвенно определять вольфрам в присутствии молибдена. Вначале определяют сумму РЬМо04 -1- PbW04, в аликвотной части определяют молибден пермангапатометрически после восстановления его до пятивалентного металлическим висмутом в редукторе Джонса. [c.92]

    До пятивалентного вольфрам можно восстановить в инертной атмосфере в среде 12 М HG1 амальгамой висмута [886] оптимальные условия 50—100 мг вольфрама, концентрации НС1 — 0,9 М, Н3РО4 — 0,3 N, температура +60° С, объем 50 мл. Вольфрам(У) оттитровывают раствором J Ia  [c.102]


Смотреть страницы где упоминается термин Вольфрам пятивалентный: [c.164]    [c.164]    [c.497]    [c.209]    [c.389]    [c.330]    [c.154]    [c.123]    [c.180]    [c.95]    [c.231]    [c.470]    [c.476]    [c.153]    [c.20]    [c.167]    [c.164]    [c.117]    [c.123]   
Основы общей химии Т 1 (1965) -- [ c.371 ]

Основы общей химии том №1 (1965) -- [ c.371 ]




ПОИСК







© 2025 chem21.info Реклама на сайте