Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь Электроотрицательность элементов

    Решение. Электроотрицательность элемента ЭО — это мера его не-металличности. Она характеризует способность атома элемента присоединять электроны при образовании химической связи. Электроотрицательность ЭО определяется как арифметическая сумма энергии ионизации и сродства к электрону, т. е. [c.29]

    Заместители, имеющие —I- и —М-э ф ф е к т ы. Ординарная ковалентная связь между атомами различной химической природы в большей или меньшей степени полярна, причем отрицательный конец диполя находится на атоме более электроотрицательного элемента, стоящего в Периодической системе правее углерода. Если же в органическом соединении атом углерода связан с атомами этих же элементов не ординарной, а кратной связью, то вследствие большей поляризуемости кратной связи дипольные моменты значительно выше, например  [c.341]


    Атомная связь, ионная связь и металлическая связь являются видами химической связи. Между этими граничными формами химической связи имеются переходные формы. С помощью таблицы электроотрицательности можно (за немногими исключениями) определить, преобладает ли в связи между двумя элементами главной подгруппы атомная связь или ионное взаимодействие. [c.56]

    Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Она зависит от многих факторов, в частности от валентного состояния элемента, типа соединения, в которое он входит, н пр. Тем не менее эго понятие полезно для качественного объяснения свойств химической связи и соединений. [c.37]

    Соединения с отрицательной степенью окисления углерода. С менее электроотрицательными, чем он сам, элементами углерод дает карбиды. Поскольку для углерода характерно образовывать гомоцепи, состав большинства карбидов не отвечает степени окисления углерода —4. По типу химической связи можно выделить ковалентные, ионно-ковалентные и металлические карбиды. [c.396]

    Подбор коэффициентов в уравнениях этих реакций проводят методом электронного баланса. Условную степень окисления атома углерода-восстановителя вычисляют исходя из того, что электронные пары оттягиваются к атому более электроотрицательного элемента, а электроотрицательность (ЭО) углерода, водорода и кислорода находится в последовательности ЭО кислорода > ЭО углерода > ЭО водорода. Отсюда следует, что химическая связь между атомами углерода неполярная в полярной связи между атомом углерода и атомом кислорода атом углерода поляризован положительно и в одинарной связи условно приобретает один положительный заряд в двойной — [c.102]

    Вопросы для самопроверки 1. Что такое химическая связь Каковы причины ее образования 2. Какие количественные характеристики химической связи известны Как влияет на тип связи электроотрицательность элементов 3. Какая химическая связь называется ковалентной Виды ковалентной связи. Как метод валентных связей (ВС) объясняет образование ковалентной связи Какие свойства ковалентной связи известны 4. Как метод ВС объясняет постоянную ковалентность кислорода и фтора и переменную ковалентность фосфора, серы и хлора 5. В чем сущность гибридизации атомных орбиталей Какие виды гибридизации атомных орбиталей известны Как влияет гибридизация атомных орбиталей на пространственную структуру молекул 6. Какая химическая связь называется кратной Что такое а-и п-связь Электроны в каких состояниях принимают участие в образованип а- и п-связи 7. Какие молекулы называются полярными и какие неполярными Что служит мерой полярности молекулы В каких единицах выражают дипольный момент 8. Что такое ионная связь и при какпх условиях она возникает Обладает ли ионная связь направленностью и насыщаемостью 9, В чем сущность метода молекулярных орбиталей (МО) Какие молекулярные орбитали называются связывающими и какие разрыхляющими 10. Какая химическая связь называется металлической 11. Как химическая связь определяет свойства веществ Приведите примеры соответствующих соединений. [c.18]


    Атом серы 5, как и атом кислорода, имеет шесть валентных электронов (35 3/) ). Сера — типичный неметаллический элемент. По электроотрицательности (ЭО = 2,5) она уступает только галогенам, кислороду, азоту. Наиболее устойчивы четные степени окисления серы (—2, +2, -j-4 и +6), что объясняется участием в образовании химических связей двух непарных электронов, а также одной или двух электронных пар  [c.322]

    Бацанов С. С. Электроотрицательность элементов и химическая связь.- Новосибирск Изд-во СО АН СССР, 1962. [c.29]

    Строение атома и периодический закон 58 13. Характер изменения свойств элементов в периодах и группах периодической системы 61 14. Потенциал ионизации, сродство к электрону, электроотрицательность 63 15. Природа химической связи и валентность элементов 67 16. Постоянная и переменная валентность 72 17. Донорно-акцепторная связь 78 18. Одинарные и кратные связи. Ковалентная, полярная и ионная [c.381]

    В одинаковом валентном состоянии, но в соединениях с различными элементами. Результаты его расчетов показывают некоторую неопределенность в значениях электроотрицательностей в зависимости от партнера химической связи данного элемента. Средние цифры, по Хаггинсу, приведены в табл. 4. [c.14]

    Полезность концепции электроотрицательности в геохимии пока не доказана. Как было отмечено выше, попытки ее применения к решению проблем распределения элементов приводят к ошибкам и недоразумениям. Однако при рассмотрении проблемы природы химической связи между элементами значения электроотрицательности представляются полезными полу-эмпирическими данными. [c.158]

    Атом водорода, соединенный с атомом сильно электроотрицательного элемента, способен к образованию еще одной химической связи. Эта связь называется водородной. Наличие водородных связей приводит к заметной полимеризации воды, фтороводорода, многих органических соединений. Например, [c.70]

    Ковалентными карбидами являются 81С и В4С. Химическая связь в иих приближается к чисто ковалентной, так как В и 5 , являясь соседями углерода в периодической системе элементов, близки к нему по размеру атомов и электроотрицательности. [c.366]

    Свойства более сложного по составу элементов, чем простое вещество, бинарного соединения сильно зависят от природы образующих его двух элементов. Важнейшим фактором является расположение этих эле.ментов в периодической системе относится ли каждый из них к металлам, неметаллам или находится на границе между металлами и неметаллами. При этом важное значение имеет степень различия элементов по электроотрицательности, размерам и другим факторам, влияющим на природу возникающей между ними химической связи. [c.340]

    В солеобразных карбидах существует преимущественно ионная связь. Поскольку углерод по электроотрицательности находится примерно в середине полного ряда элементов, то солеобразные карбиды образуются лишь при соединении углерода с металлами — активными восстановителями. Данные карбиды делятся, в свою очередь, на карбиды, не содержащие углерод-углеродных химических связей (так называемые производные метана) и содержащие их (ацетилениды, карбиды с тройной углерод-углеродной связью в ионе С2 ). Первые [c.342]

    Ионные связи образуют элементы, сильно отличающиеся по электроотрицательности. При этом происходит перемещение электронов от одних атомов к другим и возникает электростатическое взаимодействие между образующимися ионами. Однако полного перехода электронов от одного атома к другому никогда не происходит, а следовательно, чисто ионной связи не бывает. Существование и свойства соединений с другими типами химических связей классическая теория объяснить не может. [c.27]

    От энергии ионизации и сродства атома к электрону зависит электроотрицательность (ЭО) — способность атома данного элемента к оттягиванию на себя электронной плотности по сравнению с другими элементами соединений. ЭО представляет собой полусумму ПИ и СЭ. Расположение элементов в ряду по электроотрицательности закономерно и служит для объяснения химической связи в молекулах и соединениях. [c.229]

    Если взаимодействуют атомы элементов, сильно отличающиеся по электроотрицательности, например типичный металл и типичный неметалл, то электронная пара может полностью перейти к более электроотрицательному атому, вследствие чего он приобретает целочисленный отрицательный заряд, а менее электроотрицательный атом — целочисленный положительный заряд. В результате образуются отрицательно и положительно заряженные ионы, которые притягиваются друг к другу по законам электростатики. Такой тип химической связи получил название ионной связи. [c.84]

    Смешанный вид химической связи встречается в бинарных соединениях элементов, из которых один — металл, а другой — неметалл и электроотрицательности элементов отличаются недостаточно для того, чтобы связь считать ионной. Здесь имеется группа соединений, включающая отдельные халькогениды (например, AI2S3), пниктогениды ( a3N2), карбиды (ВегС), силициды (СагЗ ). Природа химической связи в этих соединениях — ковалентная сильно полярная или, как говорят, смешанная между ионной и ковалентной. Поэтому данные соединения проявляют свойства как ковалентных, так и ионных соединений, но не в полной мере. Большинство из них — солеобразны, как и ионные соединения. Однако в водных растворах они разлагаются, как многие ковалентные бинарные соединения, например  [c.341]


    При рассмотрении электроотрицательности химических элементов указывалось, что фтор является самым электроотрицательным элементом, затем в порядке уменьшения электроотрицательности идут кислород и хлор. От хлора к брому и иоду в соответствии с общим правилом изменения в группе электроотрицательность также уменьшается. С таким порядком изменения электроотрицательности галогенов тесно связаны их окислительные свойства, поскольку электроотрицательность характеризует склонность атомов присоединять к себе электроны. Следовательно, самым сильным окислителем будет фтор, [c.182]

    Соединения химических элементов, в молекулах которых все атомы относительно электроотрицательных элементов непосредственно связаны с атомами одного наиболее электроположительного элемента или, наоборот, все атомы относительно электроположительных элементов непосредственно связаны с атомами одного наиболее электроотрицательного элемента, называют простыми, или симплексными, соединениями. При этом ни атомы электроотрицательных, ни атомы электроположительных элементов не связаны друг с другом, а химические связи между атомами электроположительного и различных электроотрицательных элементов (или электроотрицательного и различных электроположительных элементов) имеют одинаковый, или во всяком случае близкий характер. [c.51]

    В ljOy эффективный заряд на атоме кислорода ничтожно мал и связь С1—О близка к неполярной, тогда как в Na O эффективный заряд на атоме кислорода составляет —0,81, т. е. в этом соединении химическая связь сильно полярна. Понижение полярности связи в этом ряду соответствует уменьшению различия в электроотрицательностях элементов, образующих соединения. [c.81]

    Электроотрицательность элементов. Представим себе, что во взаимодействие вступают атомы А и В и что химическая связь осуществляется за счет смещения электрона от одного,атома к другому. Возникает вопрос, какой из этих атомов оттянет на свою оболочку электрон Допустим, электрон переходит от А к В, Этот процесс связан с выделением энергии (Яв —/а ), где в — сродство к электрону атома В, /д— энергия ионизации атома А. При обратном переходе будет выделяться энергия ( д—/в). Направление процесса определится максимальным выигрышем энергии, так как выделение энергии стабилизирует оиотему. Допустим, что фактический переход происходит от атома А к атому В. Это означает, что (Ев—/д)> >(Еа -/в) или (/в + Ев )> (/а + а ). Величина 1/ (/ + Е) получила название электроотрицательности. Обозначим ее через х. Следовательно, [c.133]

    Если между атомами существует различие, можно ожидать, что один из них будет иметь большую способность притягивать электроны, чем другой, т. е. один из атомов может быть более электро-. отрицательным, чем другой. На основании общих представлений о химических связях известно, что истинно ионные связи образуются только между элементами, резко отличающимися по электроотрицательности. [c.122]

    Характер химической связи, электроотрицательность и ионный потенциал центрального элемента в молекуле кислоты или основания позволяют судить об их силе. Рассмотрим, например, молекулы Н3РО4 и H2SO4, обладающие довольно сходной структурой [c.252]

    Предыдущие главы этой книги были посвящены главным образом ознакомлению с такими законами химии, как правила образования химической связи, законы термодинамики, принцип действия электрохимических элементов и т. п. В ходе объяснения этих законов мы описывали химические и физические свойства многих веществ. Таким путем вы познакомились со многими химическими фактами. Однако пока что вам должно быть еще не просто предсказывать химические и физические свойства веществ, основываясь на химических законах и тех отрывочных данных, которые вы узнали. Допустим, например, что в ващих руках оказался закрытый сосуд с надписью фтор . Что вы можете сказать о свойствах вещества, находящегося внутри этого сосуда Газообразное это вещество или мелкокристаллический порошок Обладает оно высокой реакционной способностью или же его можно спокойно открывать на воздухе С веществами какого типа оно скорее всего должно реагировать Вы можете ответить на многие вопросы, основываясь на законах, уже обсуждавшихся в этой книге. Например, можно вспомнить, что, согласно изложенному в гл. 7, ч. 1, фтор существует в виде молекул р2 более того, вы можете заключить, что р2 является газообразным веществом, поскольку его молекулы неполярны и между ними действуют слабые силы притяжения. Если вспомнить, что фтор наиболее электроотрицательный элемент, то следует заключить, что он представляет собой очень сильный окислитель, а следовательно, обладает очень высокой реакционной способностью. Короче говоря, вы уже можете предсказать многие свойства химических веществ. [c.281]

    Водородная связь. Взаимодействие между молекулами может происходить благодаря наличию водородных связей. Эта связь обусловлена способностью атома водорода, непосредственно связанного в молекуле с атомом сильно электроотрицательного элемента (Р, О, N и в меньшей степени С1, 5 и др.), к образованию еще одной химической связи с подобным атомом другой молекулы. При этом возникает водородная связь. Например, молекулы карбамида, находящегося как в тетрагональной, так и в гексагональной кристаллической структуре, связаны между собой водородными связями за счет того, что атом кислорода одной молекулы карбамида образует связь с атомом водорода аминной группы соседней молекулы карбамида  [c.45]

    Образование химической связи. Для определения результата возтажшй—11Ури1 руи пиривкй электронов весьма существенно сопоставить взаимодействующие атомы в отношении способности их к присоединению и. отдаче электронов Величина, количественно характеризующая эту способность для атома, находящегося в составе устойчивой молекулы, называется электроотрицательностью элемента. [c.57]

    Нахождение электронов водорода в электронном газе соответствующей решетки металла дает основание говорить в таких случаях о металлическом типе связи водорода. Этот тип химической связи полностью реализуется лишь в гидридах переходных металлов VI—VHI групп. У переходных 1металлов V, IV и у некоторых металлов III групп происходит постепенный переход к солеобразным гидридам, которые типичны для непереходных металлов I и II групп. Основной причиной этого перехода от металлического к ионному ти- пу связи следует считать уменьшение электроотрицательности металлов при продвижении влево по периоду и, как следствие, оттягивание валентных электронов металлов к атому водорода. В то же время гидриды переходных металлов I и II групп, также как непереходных металлов III группы занимают промежуточное положение между солеобразными гидридами и летучими гидридами непереходных элементов V, VI и VII групп. В этом же направлении, начиная с типично металлических гидридов, наблюдается плавный переход и в типе связи — от металлической к атомной связи валентные электроны атома водорода во все большей степени оттягиваются к его партнеру по связи вследствие возрастания электроотрицательности последнего. Таким образом, оказьгаается, что у гомеополярных гидридов элементов главной подгруппы VII группы атом водорода поляризован положительно. [c.645]

    Металлические и неметаллические элементы различаются по своим физическим и химическим свойствам. Неметаллические элементы не имеют характерных для металлов блеска, ковкости и пластичности, а также хорошей электро- и теплопроводности. В структуре твердых неметаллических элементов атомы окружены сравнительно небольшим числом ближайших соседей и связаны друг с другом ковалентными связями. Неметаллические элементы характеризуются более высокими энергиями ионизации и электроотрицательностями, чем металлические элементы. Растворимые оксиды неметаллических элементов обычно образуют водные растворы, обладающие кислотными свойствами по этой причине неметаллические оксиды называю 1О1СЛ0ТИЫМИ ангидридами. В отличие от них растворимые оксиды металлов образуют основные растворы, и поэтому называются основными ангидридами. [c.329]

    Элемеитооргаиические соединения з-элементов. Электроотрицательность щелочных элементов находится в пределах от 1,0 у лития до 0,7 у цезия и франция. Ионность химической связи их с углеродом составляет 40-г 50%. Поэтому все органические производные щелочных элементов, кроме соединений лития, являются твердыми нелетучими солеобразными веществами с ионной связью. В органических растворителях они не растворимы. Литийорганические соединения имеют большую долю ковалентного характера в химической связи, они растворимы в органических растворителях. [c.588]

    Водородная связь. В тех случаях, когда водород соединен с сильно электроотрицательным элементом, он может образовать водородную связь, которая является промежуточной между химической и меж-молекулярной. Эта связь обусловлена тем, что смещение электрона от атома водорода превращает его в частицу, не имеющую электронов, не отталкивающуюся электронами других частиц, т. е. испытывающую только притяжение. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры, поэтому она характерна для соединений фтора и кислорода, в меньшей степени — для азота и еще в меньшей степени — для хлора и серы. Соответственно меняется и энергия водородной связи. Благодаря водородным связям молекулы объединяются в димеры, полимеры и ассоциаты. Ассоциация приводит к повышению температуры плавления и температуры кипения, изменению растворяющей способности и т. д. Водородная связь образуется очень часто, и объясняется это тем, что молекулы воды встречаются повсеместно. Каждая из них, имея в своем составе два атома водорода и две необобществленные электронные пары, может образовать четыре водородные связи. [c.237]

    Межокислители, или межоксоиды, — соединения различных окислительных элементов (оксоидов) друг с другом. Связь между атомами ковалентная полярность ее зависит от соотношения электроотрицательностей элементов, образующих соединение. Характер кристаллических решеток и физические свойства веществ такие же, как у элементарных окислителей. В отношении химической функции межокислители могут быть разделены на два подкласса  [c.52]

    Электроотрицательность элементов. Представим себе, что атомы А и В вступают во взаимолействие и химическая связь осуществляется за счет смещения электрона от одного атома к другому. Возникает вопрос, какой из этих атомов оттянет на свою оболочку электрюн Допустим, что электрон переходит от А к В и этот процесс связан с выделением энергии при обратном переходе будет выделяться энергия Еу. [c.71]

    Эффективные заряды. При образовании химической связи электронная плотность у атомов меняется. Так, при связывании двух атомов элементов, имеющих различные электроотрицательности, атом более электроотрицательного элемента притягивает электроны сильнее, чем атом менее электроотрицательного элемента. В результате электронная плотность в молекуле распределяется вдоль химической связи асимметрично. Изменение электронной плотности у атома, связанного в молекуле, можно учесть, приписав атому некоторый эффективный заряд 6 (в единицах заряда электрона). Эффективные заряды, характеризующие асимметрию электронного облака, условны, так как электронное облако делокализоваио и его нельзя разделить между ядрами. [c.77]

    Ее сменила электрохимическая теория шведского ученого Берцелиуса (1810 г.). Согласно этой теории атом каждого элемента имеет два полюса — положительный и отрицательный, причем у одних атомов преобладает первый, у других второй. Соединение электроположительного магния с электроотрицательным кислородом с точки зрения теории Берцелиуса объяснялось притяжением преобладающих в них полюсов, имеющих противоположные знаки. Если просходит частичная компенсация зарядов, то продукт реакции не утратит их полностью. Этим объясняли образование сложных молекул (например, карбоната магния в результате соединения положительного MgO с отрицательным СОг). Теория Берцелиуса явилась развитием идей Дэви (1806 г.) о том, что химическая связь возникает благодаря взаимному притяжению разноименно заряженных тел. Электрохимическая теория, на первый взгляд, представляется правдоподобной и как будто подтверждается процессом электролиза электролиз как бы возвращает атомам полярность, утраченную ими при образовании соединения. Но при таком подходе, — писал по поводу теории Берцелиуса Гегель, — встречающиеся в химическом процессе изменения удельной тяжести, сцепления, фигуры, цвета и т.д., как равно кислотных, едких, щелочных и т. д. свойств, оставляются без внимания, и все исчезает в абстракции электричества. Пусть же перестанут упрекать философию в абстрагировании от частного и в пустых отвлеченностях , раз физики позволяют себе забыть о всех перечисленных свойствах телесности ради положительного и отрицательного электричества . Действительно, вскоре электрохимическая теория исчезла из научного обихода, ибо и существование прочных молекул, состоящих из атомов одинаковой полярности (например, Нг, и С1а), и осуществление (Дюма, 1834 г.) процессов, в которых разнополярные по теории Берцелиуса элементы заменяли друг друга в соединениях, оказались в непримиримом о ней противоречии. [c.103]


Смотреть страницы где упоминается термин Химическая связь Электроотрицательность элементов: [c.155]    [c.57]    [c.51]    [c.120]    [c.340]    [c.83]    [c.84]    [c.71]    [c.134]    [c.232]   
Смотреть главы в:

Органическая химия -> Химическая связь Электроотрицательность элементов




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая

Электроотрицательное ь и тип связи

Электроотрицательность

Элемент химический

Элементы химические химическая связь



© 2025 chem21.info Реклама на сайте