Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы отделения и выделения следов веществ

    МЕТОДЫ ОТДЕЛЕНИЯ И ВЫДЕЛЕНИЯ СЛЕДОВ ВЕЩЕСТВ [c.32]

    Бутадиен (т. кип. — 3°) образуется в процессе разложения различных органических веществ, в частности — нефти. Основные задачи при его получении заключаются в том, чтобы задержать процесс уплотнения образовавшегося бутадиена, а затем выделить его возможно более полно из продукта реакции. Первая из этих задач решается быстрым выделением образовавшегося бутадиена в смеси с другими продуктами из сферы высокой температуры для решения второй отделяют сначала жидкие, смолистые продукты пиролиза, газообразные же направляют в абсорберы с подходящим поглотителем (маслом). Дальнейшая задача сводится главным образом к проблеме отделения бутадиена от других близких по свойствам продуктов реакции, особенно от бутиленов. Для этой цели моншо пользоваться избирательной растворимостью различных углеводородов в разных растворителях и другими методами, детали которых, естественно, составляют секрет производства. Совокупностью этих методов удается довести выход бутадиена при пиролизе нефти до 10% (Бызов), при пиролизе же спирта — до 30% (Лебедев). Новейшие исследования [24] показывают, что термической обработкой этилена можно, повидимому, получить бутадиен с еще большими выходами (до 70%, считая, вероятно, на этилен, вошедший в реакцию). Эта последняя реакция протекает по следующему уравнению  [c.783]


    В этой главе будут рассмотрены общие методы отделения и выделения следов вещества. При этом мы остановим свое внимание главным образом на методах, при которых происходит количественное отделение (90% или больше следов определяемого элемента). [c.32]

    При попытках синтеза нового соединения следует составить план проведения реакций, позволяющих из имеющегося соединения получить необходимое вещество. Кроме того, следует предложить метод отделения этого вещества от всех других соединений, содержащихся в реакционной смеси непрореагировавших исходных веществ, растворителя, катализатора, побочных продуктов. Обычно выделение и очистка вещества требуют гораздо [c.27]

    После отделения макрокомпонента, а если он при облучении не дает высокой активности, то сразу после растворения образца, схема химических операций обычно слагается из следующих этапов разделение смеси определяемых элементов на группы, разделение групп на отдельные элементы и последующая очистка каждого элемента. При этом элементы, образующие при облучении более короткоживущие изотопы, стараются выделить на первых операциях. Чаще всего при разделении смеси элементов на группы используют операции осаждения, а в дальнейшем для выделения и очистки отдельных элементов применяют более селективные методы экстракцию, дистилляцию, хроматографию, осаждение органическими реактивами, осаждение в присутствии комплексообразующих веществ и т. д. [6—8]. Для определения химического выхода носителей на последней операции каждый [c.10]

    Первой проблемой при установлении строения полисахаридов, как и при анализе других макромолекулярных соединений, является выделение исследуемого вещества в чистом виде. Понятие чистоты в данном случае не очень четкое из-за наличия микрогетерогенности (минорные изменения внутри одних и тех же частиц вещества). Описаны методы отделения веществ углеводной природы от различных примесей, в том числе от неорганических солей и низкомолекулярных соединений, а также от высокомолекулярных веществ, например белков и лигнинов, однако следует иметь в виду, что каждый полисахарид ведет себя по-своему. [c.216]

    Электрохимические методы [37, 12 Г, 155]. Из электрохимических методов отделения и концентрирования примесей следует указать на электролиз на ртутном катоде, используемый для выделе- ния большого чисЛа металлов (Ре, Сг, N1, Со, 2п, В1, Мо, 8п, Сс и т. д.). Применение маскирующих веществ и регулирование потенциала выделения позволяют выделить на ртутном катоде большие количества тяжелых металлов без выделения примесей других, например при определении следов никеля и цинка в меди высокой чистоты [159]. [c.82]


    Выбор группы методов концентрирования для конкретного анализируемого чистого вещества, с одной стороны, зависит от свойств элементов основы и примесей. Например, концентрирование при анализе щелочных и щелочноземельных металлов проводится, в основном, путем группового выделения примесей (экстракцией, ионным обменом, соосаждением с коллектором и пр.). Для элементов, расположенных в середине Периодической системы, и переходных металлов в высших степенях валентности характерно образование летучих соединений с ковалентным Типом связи и для целей концентрирования при анализе названных элементов и их соединений часто могут быть использованы методы испарения (сублимации) основы. Переходные металлы (с достраивающимися электронными -оболочками) склонны к комплексообразованию в растворах и для их отделения перспективны экстракционные и ионообменные методы. Разделения в группах редкоземельных и актинидных элементов (с достраивающимися /-оболочками) требуют использования высокоэффективных хроматографических методов, в частности, метода ионообменной хроматографии. С другой стороны, важное значение для выбора метода концентрирования имеют физико-химические свойства анализируемого соединения (летучесть, плавкость, растворимость). Так, соединения, которые с трудом переводятся в раствор, следует подвергать обогащению методами испарения или направленной кристаллизации. Те же методы, не связанные с химической обработкой пробы, если они могут обеспечить концентрирование нужных примесей, следует применять и при анализе прочих чистых соединений. [c.319]

    Хроматографические методы уже давно применяли в химии алкалоидов. Некоторые исследования, в которых для очистки алкалоидов использовали ионный обмен, остались незамеченными. Что касается хроматографии на окиси алюминия, то этот сорбент впервые использовали в 1937 г. для очистки настоек белладонны, хинина, ипекакуаны и стрихнина [1]. Хроматографические методы были впервые использованы при очистке отдельных или целых групп алкалоидов для отделения от сопутствующих веществ с последующим выделением и определением классическими методами анализа. Введение таких хроматогра,-фических методов, как хроматография на бумаге и тонкослойная хроматография, произвело переворот в анализе алкалоидов, особенно в идентификации близких в структурном отношении алкалоидов (например, алкалоидов спорыньи, опиума и раувольфии и др.). Из колоночных методов подобный успех имела газовая хроматография, впервые примененная в этой области в 1960 г. Следует ожидать, что в ближайшее время широкое применение получит хроматография высокого разрешения. [c.100]

    Отделение смолисто-асфальтеновых веществ (САВ) от углеводородной части является первым этапом их выделения, за которым следует разделение САВ на узкие фракции. Для этого используют дробное осаждение, дробную экстракцию, хроматографию, перегонку в глубоком вакууме, термодиффузию и другие методы. [c.222]

    В специальной части мы придерживаемся следующего плана. Сначала рассматриваем отделение данного металла от других элементов, причем главное внимание, насколько возможно, уделяем тем из них, которые могут помешать его колориметрическому определению, а также тем, которые часто ему сопутствуют. Для многих металлов нет специальных методов, дающих возможность отделить следы, и поэтому приходится ограничиться кратким описанием общих методов отделений в надежде, что при соответствующих изменениях некоторые из них можно приме-нить при работах над малыми количествами. Далее описаны важнейшие методы определения. Ход анализа приведен, по возможности, в общей форме, независимо от природы анализируемого вещества. Отмечено влияние посторонних элементов, насколько оно известно. Наконец, для многих элементов, определение следов которых имеет важное значение, даны указания, как определять их в наиболее важных материалах. В значительной степени эти указания относятся к подготовке образца к анализу и выделению определяемого металла, а само определение обычно выполняется в соответствии с описанным перед этим общим ходом анализа. В отдельных случаях даны специальные указания для конечного определения, если это вызвано природой образца. [c.134]

    Важными методами отделения малых количеств свинца являются 1) экстрагирование посредством дитизона, 2) осаждение в виде сульфида, 3) электролитическое выделение в ви (е двуокиси свинца или металла, 4) соосаждение сульфата свинца с сульфатом стронция или бария и 5) осаждение в виде хромата или фосфата. Какой из этих методов следует применить в каждом частном случае, решают в зависимости от природы анализируемого вещества иногда для удовлетворительного отделения необходимо применять комбинацию двух методов. [c.424]

    Техника эксперимента, применяемая в случае количеств порядка нескольких миллиграммов, меняется при работе с количествами в 10 раз большими или меньшими, и она, как правило, не приложима к количествам в 1000 раз большим или меньшим. Вследствие этого микрохимия должна располагать разнообразными приемами проведения каждой операции и целесообразно классифицировать их, исходя из количества вещества, применяемого для анализа. В этой книге все методы классифицированы по Эмиху как полумикро-, микро- и ультрамикрометоды. Критерием классификации служит количество вещества, применяемого в начале работы, вес навески, взятой для анализа, а не масса компонента, содержащегося в навеске. Конечно, при выделении следов необходимо проводить работу в масштабе, соответствующем постепенно уменьшающейся массе. Нельзя применять ультрамикрометоды в самом начале работы, например, когда требуемся выделить 3 у магния из 10 г металлического алюминия. При удалении основной части алюминия необходимо использовать макрометоды отделение магния от следов других компонентов может потребовать применения микрометодов а точное определение выделенного магния, очевидно, возможно только при использовании техники работы с ультрамикроколичествами. [c.10]


    При выделении органических веществ из смесей могут применяться крайне разнообразные методы. Тут будет иметь место и отделение твердых тел от твердых и жидких путем извлечения при помощи растворителей, а также осаждения, высаливания, кристаллизации, диализа, возгонки, фильтрования, выпаривания растворителя при разных условиях и пр., и разделение друг от друга жидких тел механическим путем, а также дробной перегонкой, перегонкой в вакууме, с водяным паром и пр. Всех этих манипуляций много, и рассмотрение обязательно каждой из них в отдельности, с подробным описанием необходимой для этого аппаратуры, входит в задачу специальных руководств при практических работах по синтезу органических препаратов. Здесь следует остановиться только на некоторых из них и познакомиться с ними лишь в таком объеме, чтобы иметь достаточное понятие о ходе изолирования веществ и их очистки и таким образом прийти к признанию необходимости общепринятых манипуляций и ясно себе представить, как иногда из чрезвычайно сложных смесей путем часто длительной и кропотливой работы удается, наконец, изолировать вполне индивидуальное соединение. Произведенный после тщательной очистки качественный и количественный анализ такого вещества скажет нам о его составе, а определение величины молекулярного веса даст, наконец, и формулу последнего. [c.15]

    Фракционное осаждение. Иногда можно обработать вещества таким образом, что общим носителем осаждают фактически полностью микрокомпонент и только часть основного компонента. В этом состоит отличительный признак метода фракционного осаждения, и для его эффективного применения, очевидно, нужно, чтобы осаждающий реактив образовывал с микрокомпонентом менее растворимое соединение, чем с основным компонентом. Осадок основного компонента действует как носитель. Этот метод концентрирования применяется в качестве предварительной ступени при применении другого способа отделения, который неприменим, если отношение количества посторонних веществ и следов вещества очень неблагоприятно. Другими словами, фракционное осаждение позволяет снизить концентрацию основного компонента до такого уровня, когда она заметно не мешает прямому определению следов вещества. Этот принцип концентрирования иногда находит применение при разделениях с помощью сульфидов, как, например, для отделения кадмия в присутствии большого количества цинка (стр. 322) или выделения свинца в присутствии большого количества железа (стр.б 14). [c.38]

    При разработке методик анализа, кроме постоянных систематических ошибок, следует иметь в виду переменную систематическую ошибку, которая может быть связана с нерегистрируемым на хроматограмме соединением. Так, при проверке на чистоту фракций, выделенных на препаративном хроматографе, может быть допущена ошибка из-за конденсации жидкой фазы в ловушках. Ошибка такого же типа возможна, если в анализируемой смеси присутствуют высококипящие компоненты, которые при заданной температуре термостата не выходят из колонки, или если одним из компонентов является газ-носитель либо вещество, теплопроводность которого близка к теплопроводности газа-носителя (а детектор — катарометр). При анализе водных растворов с использованием пламенно-ионизационного детектора следует иметь в виду, что чувствительность детектора к веществам существенно изменяется, если они элюируются одновременно с водой [1]. В первом примере переменную систематическую ошибку можно устранить, если расчет количественного состава провести по методу внутреннего стандарта либо использовать другую жидкую фазу с низкой упругостью пара при более низкой температуре. Во втором примере такая ошибка может быть устранена либо поглощением воды, либо ее хроматографическим отделением. [c.159]

    Селективное отделение основы осаждением, при котором большинство примесей должно оставаться в маточном растворе, кажется более перспективным приемом подготовки чистого вещества к анализу, чем соосаждение с коллектором. Однако в области крайне малых содержаний элементов практически любая контактирующая с раствором поверхность твердого тела может в значительной степени сорбировать растворенные микропримеси. Тем более это относится к осадку основы, обладающему, особенно в момент выделения, значительной активной поверхностью. Реальная опасность потерь примесей при выделении осадков привела к формулированию следующего правила для всех методов концентрирования в растворах ни в одной из операций обогащения основа не должна находиться в виде твердой фазы [1411]. [c.308]

    Определения следов по этому методу следует избегать. Прежде всего, осаждение большого количества вещества пред- ставляет опасность большей или меньшей потери определяемых следов в результате соосаждения, что всегда надо иметь в виду. Если соосаждение не очень велико, то переосаждение осадка может обеспечить хорошее отделение. Система с и С должна быть исследована в каждом частном случае. Даже если этим путем можно достигнуть удовлетворительного разделения, определяемые следы обычно остаются в большом объеме раствора и их последующее определение может потребовать предварительного выделения или концентрирования их из этого раствора. Иногда этот метод разделения применяют из-за отсутствия лучшего [c.41]

    Аналогичным образом метод индикаторов можно применить не к исходной молекуле одного типа, но сразу к нескольким. В будущем это должно иметь существенное значение для исследований обмена веществ, так как простыми измерениями можно обнаружить, например, селективное накопление определенных элементов или молекул в различных местах изучаемого объекта. При применении метода устойчивых изотопов часто приходится прибегать к сложным процессам для их отделения, очистки и измерения. Рассматриваемый в следующем разделе метод радиоактивных изотопов имеет то преимущество, что перемещение веществ может быть прослежено даже без их выделения, в том числе на-живом организме. [c.11]

    Полезный метод отделения следовых количеств веществ представляет перегонка с паром (кодистилляхщя). Этот метод, главным образом перегонка с водяным паром, используется, в частности, для разделения соединений на фуппы, например для отделения летучих веществ ог нелетучих (белков, жиров и т.п.) и выделения следовых количеств ХОП из природных вод. Предварительно следует выяснить, не разрушается ли определяемое вещество при температуре отгонки. В противном случае следует применять отгонку с паром при пониженном давлении. Отогнанные соединения обычно извлекают из конденсата жидкостной экстракцией. Иногда применяют перегонку с другими растворителями (метанол, циклогексанон и т.п.) (123 . В другом варианте добавляют растворитель, кипящий при сравнительна низкой температуре, но с которым совместно отгоняются определяемые компоненты, например дихлорметан. Этот прием даст хорошие результаты при отделении суперэкотоксикантов от веществ, содержащих природные липиды, которые хорошо растворяются в дихлорметанс(5  [c.230]

    По области применения аналитические реакции в качественном анализе делят на групповые и характерные (индивидуальные). Групповые реакции служат для выделения из сложной смеси веществ определенных групп, называемых аналитическими. Применяемые при этом реагенты называют групповыми. Например, в классическом сероводородном методе анализа выделяют следующие групповые реагенты на катионы (ЫН4)2СОз — П аналитичё-ская группа (NH4)2S —П1 группа H2S — IV группа НС1—V группа. Групповые реакции используют а) для обнаружения присутствия данной аналитической группы б) в систематическом ходе анализа для полного отделения аналитической группы от других групп в) для концентрирования следовых количеств веществ  [c.114]

    Используя основные свойства азуленов, применяют следующие методы отделения от веществ, не обладающих основными свойствами, и друг от друга. Шерндал впервые обнаружил, что азулен можно экстрагировать из его растворов в петролей-ном эфире 60%-ной серной или 85%-ной фосфорной кислотами и что после разбавления кислотной фазы азулен можно регенерировать [160, 161]. С тех пор этот метод широко используют для выделения чистых азуленов из синтетических или природных смесей (например, [105, 141]). [c.320]

    Из ЭТОГО общего уравнения коэффициента распределения, которое принципиально применимо и для фракционного осаждения, вытекают условия успешного фракционирования для достижения требуемого коэффициента распределения. Фракции с наиболее высокой степенью полимеризации должны при добавлении осадителя переходить в основном в нижнюю фазу для этого значение V указанных фракций со степенью полимеризации Р должно быть максимальным, уменьшаясь для масс полимера остальных степеней полимеризации. Это требование лучше всего выполняется в том случае, когда объем верхней" фазы будет возможно большим по сравнению с объемом нижней фазы кроме того, следует применять для фракционирования растворы полимера низкой концентрации. Наконец, разделение фаз должно происходить при возможно более высокой температуре. Величина в должна поддерживаться возможно более низкой, но, если температура и отношение фаз установлены, дальнейшее изменение величины е уже невозможно. Поскольку Р — степень полимеризации выпавших фракций находится в числителе экспоненты е-функции, то необходилю сохранить как люжно более низкий V при выделении остающихся в растворе более низкомолекулярных фракций. Большой объем верхней фазы и малый объем нижней фазы, содержащей высокомолекулярные фракции, соответствуют экспериментальным требованиям точного и быстрого разделения полимера. Наблюдающееся замедление в разделении фаз объясняется медленным слиянием капель при разделении скорость этой реакции зависит от концентрации полимера в растворе (реакция второго порядка), причем снижение концентрации полимера в исходном растворе можно проводить лишь в определенных пределах. Этим объясняется тот факт, что в процессе фракционирования, большей частью после отделения примерно 60% вещества, необходимо концентрировать раствор путем выпаривания. Таким образом, вышеописанные условия экспериментального проведения фракционирования находятся в соответствии с теоретическими требованиями, которые, согласно уравнению (60), справедливы, по крайней мере качественно, и для метода фракционного осаждения (из-за изменения соотношения концентраций наблюдаются некоторые отклонения, на которых мы здесь не будем останавливаться). [c.135]

    Достоинством метода является возможность определения микроколичеств веществ с одновременным концентрированием их на колонке и отделением от основы образца. В литературе есть пример выделения этим методом 19 г Pd из 10 галлонов солевого раствора [1]. Авторами настоящей статьи разработаны методы концентрирования 10 мкг Ga с одновременным количественным отделением их от 500 г Zn lj, [2], а также метод группового концентрирования следов Ga, Fe(HI), Со, u(H) и одновременного отделения их от 230 г AI I3 [3]. Ценность метода экстракционной хроматографии возрастает в случае рационального его сочетания с высокочувствительными инструментальными методами онределения выделенных элементов. [c.211]

    Хотя методом распределительной хроматографии на целлюлозе было выполнено много работ по разделению неорганических веществ, лишь небольшое число их им еет отношение к отделению следов веществ. Это замечание особенно справедливо для разделений, проведенных на хроматографических колонках. I Одним из Примеров применения распределительной хроматографии для отделения следов вещества служит выделение следов металлов из природн >1х вод с помощью раствора дитизона в четыреххлористом углероде в ка> 1естве неподвижной фазы Для набивки колонки используют ацетат целлюлозы. Пробу воды корректируют, чтобы установить pH равным 7, и пропускают через колонку со скоростью 2—6 л чар. Свинец, цинк, кадмий и марганец элюируют 1 М соляной кислотой, медь, и кобальт — концентрированным раствором аммиака. Извлечение меди и цинка из 10 л водщ, содержавшей по 10 у каждого металла, составило соответственно 102 и 114%. Полнота извлечения 10 у цинка из 1 л воды с жесткостью 12% б ыла 95%. Эти результаты достаточно благоприятны и заслуживают серьезного внимания с точки зрения применения этой методики в некоторых разновидностях анализов следов веществ. [c.40]

    Экстракционный метод извлечения следов вещества из водного раствора с помощью органического растворителя, не смешивающегося с водной фазой, во многих случаях является идеальным методом отделения микрокомпонента от больших количеств посторонних веществ. Часто он обладает высокой избирательностью и обычно позволяет путем повторения экстракционных операций выделять вещества с желаемой полнотой. Метод экстракции име ет большое значение не только для разделения веществ, но также для выделения малых количеств какого-либо компонента из большого объема водного раствора и концентрирования его в малом объеме несмешивающегося растворителя. Таким путем достигается более высокая чувствительность определения, когда экстрагируемое соединение окрашено. В настоящее рремя экстракцией несмешивающимся растворителем можно эффективно разделять большее число металлов, чем какйл-либо другим методом. [c.44]

    Известны следующие методы, основанные на равновесии этих типов выделение определяемых элементов Б виде летучи соединений с кислородом, например воды, диоксида углерода, серы в виде 802 или 50з) выделение элементов в виде летучих соединений с галогенами, например отгон]<а АзС1з, СгСЬ, ОеСи, 8ЬС1з и др. выделение элементов в виде летучих соединений с водородом, например АзНз и др. метод газовой хроматографии, в котором некоторые неорганические вещества переводят в газообразное состояние, например кремний, германий, мышьяк, олово, бериллий определяют в виде летучих гидридов после их отделения от многих элементов, не образующих летучих соединений с водородом. [c.27]

    Метод радиоколлоидов. В литературе указывается [18], что радиоизотоп без носителя не выпадает в осадок, так как не достигается произведение растворимости. Однако вычисления показывают, что причина этого иная. При концентрации обычной для лабораторного выделения радиоизотопа без носителя, —10 —грамм-атома в литре (1 мкюри в 1 мл) очень легко может быть достигнуто и превзойдено произведение растворимости для гидроокисей и карбонатов, т. е. соединений, которые наиболее легко могут образоваться не только при нейтрализации или подщелачивании, но даже нри хранении растворов. Но образование осадка в этих случаях не наблюдается, так как пресыщающее количество чрезвычайно мало и составляет 10 —10 г/л. Такие ультрамикроколичества твердой фазы поддаются центрифугированию и удерживаются фильтром, на чем и основан метод радиоколлоидов. Захватом таких форм нахождения радиоактивного вещества в растворе следует объяснить и отделение радиоизотопов в методе s avenging . В тех случаях, когда произведение активных концентраций не достигает произведения растворимости, возможны местные пересыщения на отдельных участках поверхности сосудов, на пылинках, в местах поступления реактивов. В зависимости от концентрации наблюдается резкая разница в степени образования радиоактивным изотопом форм, подвергающихся центрифугированию. Для одних элементов доля радиоактивного изотопа, удаляемая центрифугированием, уменьшается с увеличением концентрации (например Ап при pH 5 отделяется центрифугированием из< 10 укГ раствора на 96%, из 10 iV/—77%,из М —11% и из 10 М—3% [20]), для других, обладающих в этом случае нормальным химическим поведением, увеличивается (нанример, Zn при pH 9 отделяется центрифугированием из 10 М раствора на 80 %, из 10 Л/—95% и из 10 М—97 % [21]). [c.160]

    Меченые атомы в органические соединения можно вводить либо химическими, либо биологическими методами. Например, меченую никотиновую кислоту можно получать как путем химических реакций 15], так и при помощи биологических процессов. В последнем случае табак выращивают в атмосфере Ю2 и из растения экстрагируют никотин, который затем окисляют до никотиновой кислоты. Следующие факторы ограничивают эффективность биологического метода 1) неизбежные потери радиоактивного изотопа вследствие реакций элиминирования, происходящих в процессах обмена веществ 2) возможный биосинтез побочных соединений 3) нежелательное разбавление меченого соединения немеченым, которое присутствует в организме 4) биосинтез соединения, меченного изотопом с коротким периодом полураспада, не всегда возможен ввиду фактора времени 5) выделение меченого соединения из сложной биологической системы обычно затруднительно 6) некоторые соединения синтезируются живыми организмами очень медленно или только лишь на определенных стадиях своего развития. Очевидно также, что слишком большая радиоактивность может привести к гибели организма. Вообще к биологическому синтезу следует прибегать лишь в тех случаях, когда меченое соединение невозможно получить иным методом. Несмотря на эти недостатки, биосинтез-привлекает большое внимание. Отделение изотопов Ок-Риджской национальной лаборатории в 1950 г. опубликовало отчет о биологическом методе введения меченых атомов в органические соединения. В отчете имеются данные о большом числе органических соединений, которые были уже получены или могут быть получены в будущем путем биосинтеза. [c.312]

    Сульфон бутадиена—твердое вещество с температурой плавления 65° С При нагревании до 125° С он разлагается на бутадиен и двуокись серы. Метод выделения бутадиена состоит в следующем смесь углеводородов и двуокиси серы нагревают при умеренной температуре и высоком давлении, отделяют недиеновые углеводороды и разлагают сульфон, нагревая его при атмосферном давлении. Полученные газы промывают водой для отделения двуокиси серы от бутадиена. По одному из методов сульфон разлагают в присутствии растворителя, который растворяет бутадиен, но не смешивается ,с двуокисью серы. Таким растворителем может служить, например, легкий .еросин. Утверждают, что этот метод позволяет избежать многих затруднений, связанных с коррозией аппаратуры [25]. [c.202]


Смотреть страницы где упоминается термин Методы отделения и выделения следов веществ: [c.270]    [c.240]    [c.27]    [c.277]    [c.701]    [c.94]    [c.94]   
Смотреть главы в:

Колориметрическое определение следов металлов -> Методы отделения и выделения следов веществ




ПОИСК





Смотрите так же термины и статьи:

Выделения методы

Метод веществам

Методы отделения

след

след н след



© 2025 chem21.info Реклама на сайте