Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ПАН волокон аппаратура

    Наконец, следует упомянуть о способе полимеризации, при котором вообще не требуется удалять пузырьки газа из расплава [50]. В качестве активатора, а также стабилизатора вязкости расплава в этом случае используют воду, вводимую в количестве всего около 1%, благодаря чему нет необходимости удалять пары воды перед формованием волокна. Аппаратура, в которой проводится полимеризация, должна работать под давлением. Это видно из чертежа (рис. 47), на котором показаны два насоса, расположенные в начале и конце спиралевидной полимеризационной трубы. Данных о промышленном использовании этого аппарата, насколько это известно авторам, пока нет. [c.157]


    Испытания опытной установки, основным элементом которой был мембранный аппарат с кварцевыми капиллярами (1000 капилляров длиной 1 м, диаметром 180 мкм и толщиной стенки 60 мкм) показали возможность получения из газа, содержащего 0,05% (об.) Не, 85% (об.) СН4 и 14,95% (об.) N2, практически чистого [99,96% (об.)] гелия. Перепад давлений на мембранах достигал 7,0 МПа наиболее эффективной оказалась работа установки при 673 К. Однако трудность изготовления аппаратуры с кварцевыми волокнами, работающей к тому же при высокой температуре, представляет собой существенный недостаток, сдерживающий внедрение процесса в широком масштабе. Кроме того, несмотря на огромную селективность по гелию, удельная производительность аппарата с кварцевыми капиллярами мала — всего 37,0-10- 2 мЗ/(м2-с-Па), т. е. 13,3-10 м (м2-ч-МПа). [c.323]

    Применение перхлорвинила. Перхлорвинил широко применяется в лакокрасочной промышленности для производства лаков и эмалей, в том числе стойких к атмосферным воздействиям и агрессивным средам. Перхлорвинил используют в химической промышленности для защитного покрытия химической аппаратуры. Он широко используется для получения синтетического волокна хлорин, из которого изготавливают фильтровальные ткани, канаты, ленты для транспортеров, рыболовные сети, ткани для спецодежды и лечебного белья. [c.35]

    К числу современных пластмасс относятся так называемые армированные пластики. В армированных пластиках в качестве наполнителя используют различные волокна. Волокна в составе пластмассы несут основную механическую нагрузку. Органопластики — пластмассы, в которых связующим являются синтетические смолы, а наполнителем — органические полимерные волокна. Их широко применяют для изготовления деталей и аппаратуры, работающих на растяжение, средств индивидуальной защиты и др. В стеклопластиках армирующим компонентом является стеклянное волокно. Стекловолокно придает стеклопластикам особую прочность. Они в 3—4 раза легче стали, но не уступают ей по прочности, что позволяет с успехом заменять ими как металл, так и дерево. Из стеклопластиков, например, изготовляют трубы, выдерживающие большое гидравлическое давление и не подвергающиеся коррозии. Материал является немагнитным и диэлектриком. В качестве связующих при изготовлении стеклопластиков применяют ненасыщенные полиэфирные и другие смолы. Стеклопластики широко используются в строительстве, судостроении, при изготовлении и ремонте автомобилей и других средств транспорта, быту, при изготовлении спортинвентаря и др. По сравнению со стеклопластиками углепластики (п.ласт-массы на основе углеродных волокон) хорошо проводят электрический ток, в 1,4 раза легче, прочнее и обладают большей упругостью. Они имеют практически нулевой коэффициент линейного расширения по цвету — черные. Они применяются в элементах космической техники, ракетостроении, авиации, наземном транспорте, при изготовлении спортинвентаря и др. [c.650]


    Полипропилен широко используется для производства прочных пленок, труб, электроизоляционных материалов, деталей химической аппаратуры, волокон, упаковочной пленки. Устойчивость к истиранию позволяет получать из него прочные волокна для изготовления канатов, сетей, фильтровальных тканей. [c.217]

    Пластические массы, пленки, синтетическое волокно, конструкционные н электроизоляционные материалы Синтетическое волокно, лаки, электроизоляционные материалы, заменители кожи, антикоррозионные покрытия, конструкционные материалы Детали химической аппаратуры, пленки, волокна [c.185]

    Учитывая также и возможности гидрогенизационных заводов (наличие больших количеств водорода, окиси углерода, аппаратуры высокого давления и ряд других), вполне целесообразна организация на них переработки части продуктов, выделяемых из гидрогенизатов. Сюда следует отнести производство циклогексана и циклогексанола гидрированием бензола и фенола. При их окислении получают адипиновую кислоту, служащую сырьем для производства лаков и пластификаторов. Кроме того, циклогексан и циклогексанол являются исходным сырьем для получения искусственного волокна — капролактама. [c.844]

    Пластифицированный поливинилхлорид в больших количествах используется для изоляции кабелей и проводов связи, причем он одновременно заменяет каучук, свинец и хлопчатобумажную пряжу. Другие области применения—производство искусственной кожи, линолеума, плащей, накидок, сумок и других предметов домашнего обихода. Путем переработки поливинилхлорида без применения пластификаторов получают винипласт. Это твердая пластическая масса, которая легко сваривается и поддается механической обработке. Винипласт применяется для изготовления вентиляционных труб, насосов и различных частей аппаратуры. Хлорированием поливинилхлорида получают пер-хлорвиниловую смолу. В виде лаков и клеев ее применяют для поверхностных покрытий из нее готовят волокно (хлорин). [c.118]

    Для гибки заготовок полуобечаек толстостенной сварной аппаратуры применяют гидравлические прессы и валки. Данный метод гибки заготовок с последующим применением электрошлаковой сварки позволяет изготовлять сварные корпуса аппаратуры взамен цельнокованых. На прессах изгибу подвергаются, как правило, поперечные волокна листа в соответствии с общепринятой картой раскроя. На рис. И. 10 изображены вертикальные валки с гидроприводом мощностью 3500 Т, встречающиеся в практике аппаратостроения и котлостроения. Характеристика пресса определяется максимальной толщиной изгибаемого листа в холодном состоянии 90 мм и длиной до 5000 мм [15]. [c.170]

    Рекомендуется для защиты аппаратуры в производстве искусственного волокна благодаря стойкости к действию серной кислоты с добавками сероводорода и сероуглерода до 100 С [c.103]

    Происхождение этих компонентов осталось необъясненным. Одни исследователи предполагают, что вместе с остатками лигнина в раствор переходят связанные с ним гемицеллюлозы. Другие считают, что причиной появления в растворе гемицеллюлоз является трение волокон во время перемешивания массы в аппаратуре для хлорирования и щелочения. Третьи высказывают предположение о том, что в процессе хлорирования в волокнах возникает высокая концентрация соляной кислоты и поднимается температура, что способствует гидролизу гемицеллюлоз, обломки макромолекул которых легко переходят в раствор. [c.378]

    Изучение влияния относительной влажности газовоздушной смеси и содержания влаги в сорбенте позволяют в значительной мере аргументировать переход от четырехфазного процесса адсорбции сероуглерода в неподвижном слое адсорбента к двухфазному, из которого полностью исключены стадии сушки и охлаждения угля. Как показали промышленные испытания на Калининском комбинате химического волокна, при некотором изменении конструкции аппаратуры (применение адсорберов с паровой рубашкой) после стадии десорбции газовоздушная смесь, имеющая относительную влажность 50—60%, при 40—60 °С может быть подана в слой активного угля, прошедшего только стадию десорбции перегретым паром. При этом процесс очистки протекает достаточно эффективно. Фронт тепловой волны опережает передвижение фронта сорбции, уголь охлаждается непосредственно в стадии очистки, одновременно происходит его подсушка с 5 — 20% до требуемого уровня влажности, т. е до 6—8% (масс.). [c.287]

    Для изготовления различных конструкционных элементов с металлическими вставками предпочтительно использовать поликарбонаты, армированные стеклянным волокном. Вследствие незначительной усадки при формовании (всего 0,2—0,6%), низкого термического коэффициента линейного расширения (25—30-10 /°С), близкого к коэффициенту линейного расширения металлов, изделия из армированных поликарбонатов не обнаруживают тенденции к растрескиванию даже в процессе длительной эксплуатации. Поликарбонаты этого типа используют для изготовления контрольно-измерительной аппаратуры. [c.284]


    Температура работающего в трансформаторе масла достигает 65—70, а иногда 90° С. В таких условиях происходит окисление углеводородов масла и образуются нерастворимые продукты и низкомолекулярные водорастворимые кислоты. Повышается общая кислотность и число омыления, вязкость и зольность масла. Появляются взвеси мелкодисперсных мыл и примесей, волокна изоляции и нерастворимый осадок. Взвешенные частицы мыл и других осадков в значительной степени понижают изолирующие свойства масла (tgб и электрическую прочность). Вследствие негерметичности аппаратуры в масло постепенно проникают извне в незначительном количестве вода и пыль. Вода образуется и при окислении масла. [c.43]

    Биологическая совместимость углеродного волокна с тканями живого организма позво.ляет использовать углепластики для изготовления протезов, деталей. медицинской аппаратуры. [c.144]

Рис. 30. Аппаратура для формования волокна из расплава полимера. Рис. 30. Аппаратура для <a href="/info/12053">формования волокна</a> из расплава полимера.
    Полипропилен, как и полиэтилен, обладает высокой химической стойкостью, обрабатывается в изделия на обычном оборудовании методом литья под давлением, прессовкой, дутьем, легко сваривается в атмосфере азота. Полипропилен нашел широкое применение в самых различных отраслях народного хозяйства. Из полипропилена изготовляют трубы, детали машин, холодильников, корпуса радиотелевизионной аппаратуры, изоляцию кабелей и полипропиленовые волокна, обладающие высокой прочностью и низкой плотностью. Стоимость полипропилена в несколько раз меньше стоимости полистирола, полиамидных и полиэфирных смол. [c.258]

    Таким образом, переработка полимеров через растворы имеет определенные ограничения, связанные с формой изделия (пленки и волокна пли подобные нм тонкослойные изделия). С другой стороны, существуют полимеры, которые могут быть переработаны только чер з растворы (целлюлоза и другие природные полимеры, некоторые виды синтетических термостойких полимеров). Естественно, что высокая производительность и экономичность процессов переработки через расплав выгодно отличают этот метод от метода переработки через раствор, когда требуется рекуперация растворителя, более сложная аппаратура и, как правило, значительные объемы ироизводственных помещений. Тем ие менее через растворы ежегодно перерабатывается свьппе 3,5 млн. т полимерных материалов в волокна и около 0,2 млн. т в упаковочные и изоляционные пленки. Количество полимерных материалов, перерабатываемых через растворы в пленки-подложки для светочувствительных слоев, достигает также сотен тысяч тонн. Кроме того, очень большие количества полимеров используются в виде растворов в качестве пленкообразующего материала для покрытий (пленки, эмали, краски)и в качестве основы для клеев. [c.12]

    Наиболее приемлемым способом термообработки, позволяющим достигнуть максимально возможной степени вытягивания, является обработка движущегося полиамидного жгута низкого номера насыщенным водяным паром при 110°. При этом полностью исключается опасность расплавления жгута, вряд ли возможно и повреждение волокна при этой температуре. Эффективность такой обработки достаточно велика, применяемая аппаратура несложна по конструкции и удобна в эксплуатации. На рис. 256а и 2566 приведены фотография и схема аппаратуры для термообработки в атмосфере водяного пара. Эта аппаратура позволяет проводить обработку жгута полиамидного волокна хлопкового типа с общим титром выше 100 ООО денье (считая на вытянутое волокно) при скорости жгута более 150 м/мин. Технологический процесс протекает очень устойчиво, причем удлинение волокна после его усадки в кипящей воде составляет около 50%. В большинстве случаев это удовлетворяет требованиям, предъявляемым на практике к волокну. Аппаратура, показанная на рис. 256а, обеспечивает нормальные санитарно-гигиенические условия труда, поскольку она дает возможность благодаря соответствующему разделению приспособлений для охлаждения жгута и конденсации пара (рис. 2566) уменьшить до минимума количество пара, уносимое быстро движущимся жгутом в помещение. [c.540]

    Продувочные газы циклических процессов обычно находятся под высоким (до 5,0—10,0 МПа) давлением, поэтому разность давлений — движущая сила массопереноса через мембрану — может быть большой. Гидравлическое сопротивление мембранной аппаратуры в этом случае существенной роли не играет и выбор конструкции определяют другие параметры, в основном плотность упаковки мембран. Поэтому наибольщее распространение в установках извлечения водорода нашли модули на полых волокнах, например мембранный модуль Пермасеп (рис, 8.3) [25]. [c.276]

    Учитывая все существующие требования к продуктам разделения природных газов, практически идеальным для селективного извлечения гелия из обедненных газов оказывается использование кварцевого стекла [39] с проницаемостью по гелию при температуре 673 К 3,26-10моль м/(м с Па). Это позволяет получать из газа, содержащего, % по объему. 0,05 Не, 85 метана, 14,95 азота, практически чистый (99,99 % по объему) Не при перепаде давления на мембранах 7,0 МПа. Основным недостатком, затрудняющим внедрение процесса в промышленном масштабе, является трудность изготовления аппаратуры с кварцевыми волокнами. Кроме того, несмотря на огромную селективность по гелию, удельная производительность аппарата с кварцевыми капиллярами чрезвычайно мала. [c.173]

    Полипропилен обладает целым комплексом великолепных эксплуатационных свойств высокой механической прочностью, устойчивостью к действию кислот, щелочей, масел и органических растворителей. Из полипропилена изготавливают вьюокопрочную пленку, волокна, трубы, упаковочные материалы, арматуру, сосуды, корпуса аппаратуры, бытовые изделия от посуды до чемоданов. [c.70]

    Обширный обзор экспериментальных установок, необходимых для исследования напряженных волокон в ЭПР-резонаторе, содержится в работе Рэнби и др. [2]. Эти установки значительно более сложные, чем аппаратура для исследования порошков, хотя требования по регулированию температуры и атмосферы, окружающей образец в резонаторе, почти те же самые. Известны рычажные и гидравлические системы нагружения с сервомеханизмами [29, 37, 44, 60], с помощью которых запрограммированная по определенному закону нагрузка и деформация могут быть приложены к пучкам волокон (или другим растягиваемым образцам) непосредственно в резонаторе. Необходимо, чтобы растяжение упругих образцов проводилось в таком температурном режиме, при котором можно легко наблюдать спектры свободных радикалов. Для термопластичных волокон этот режим соответствует температура.м 200—320 К предварительно ориентированные волокна каучуков необходимо испытывать при температурах 93—123 К- При этих температурах первичные свободные радикалы достаточно подвижны, чтобы быстро вступать в реакции с атомными группами своей или других цепных молекул, с абсорбированными газами, примесями или включениями, действующими в качестве лову- [c.182]

    Графитация карбонизованного волокна осуществляется при очень БЫС0Ы1х температурах (до 3000°С) в инертной среде, обычно азоте или аргоне. На этой стадии еще в большей мере, чем при карбонизации, необходима тщательная очистка защитных газов от следов кислорода, а также применение аппаратуры, исключающей попадание кислорода воздуха в реакционное пространство. Как и при карбонизации, к основным условиям графитации относятся среда, температурно-временные реясимы, степень вытягивания волокна. [c.62]

    Сочетание атомов углерода разных гибридных состояний в единой полимерной структуре порождает множество аморфных форм углерода. Типичным примером аморфного углерода является так называемый стеклоуглерод. В нем беспорядочно связаны между собой структурные фрагменты алмаза, графита и карбина. Его получают термическим разложением некоторых углеродистых веществ. Стеклоуглерод — новый конструкционный материал с уникальными свойствами, не присущими обычным модификациям углерода. Стеклоуглерод тугоплавок (остается в твердом состоянии вплоть до 3700°С), по сравнению с большинством других тугоплавких материалов имеет небольшую плотность (до 1,5 г см ), обладает высокой механической прочностью, электропроводен. Стеклоуглерод весьма устойчив во многих агрессивных средах (расплавленных щелочах и солях, кислотах, окислителях и др.). Изделия из стеклоуглерода самой различной формы (трубки, цилиндры, стаканы и пр.) получают при непосредственном термическом разложении исходных углеродистых веществ, в соответствующих формах или прессованием стеклоуглерода. Уникальные свойства стеклоуглерода позволяют использовать его в атомной энергетике, электрохимических производствах, для изготовления аппаратуры для особо агрессивных сред. Стекловидное углеродистое волокно, обладая низким удельным весом, высокой прочностью на разрыв и повышенной термостойкостью, может найти применение в космонавтике, авиации и других областях. [c.450]

    Широко применяется в производстве искусственной кожи и пленочных материалов, для электроизоляции, противокоррозионной защиты химической аппаратуры, производства синтетического волокна. Например, путем дополнительного хлорирования поливинилхлорида получают хлориновую смолу. Последнюю растворяют в ацетоне, раствор продавливают через мелкие отверстия фильеры (стр. 484) в ванну с водой. В результате образуются длинные нити — синтетическое волокно хлорин, из которого вьфабатывают пряжу. Хлориновое волокно применяется для изготовления ковров, медицинского белья и для технических тканей. [c.470]

    Это прочный термопластичный материал с молекулярной массой 300 ООО—400 ООО. При обычной температуре полихлорвинил — твердый материал, однако его можно сделать мягким, гибким, смешивая с труднолетучими растворителями — пластификаторами — дибутиловым или диоктиловым эфиром фталевой кислоты, трикре-зиловым эфиром фосфорной кислоты и др. Из пластифицированного полихлорвинила изготовляют гибкие листы, пленки, формуют под давлением различные изделия, употребляют его для производства искусственной кожи, заш,итных перчаток. Из жесткого, непла-стифицироваиного полихлорвинила изготовляют листы и трубы. Из-за устойчивости к коррозии этот материал заменяет свинец или нержавеюш,ую сталь при изготовлении химической аппаратуры. Из полихлорвинила можно получать и волокна. Это один из самых дешевых видов синтетического волокна. Их применяют для изготовления фильтровальных тканей, рыболовных сетей, трикотажа и медицинского белья (хлориновое волокно). [c.331]

    Этот материал по масштабам производства стоит на втором месте (после полиэтилена). Молекулярная масса ПХВ около 300 тыс. При обычной температуре ПХВ — твердый материал, однако его можно сделать мягким, добавляя пластификатор — трудно летучий растворитель. Из ПХВ изготовляют пленки, искусственную кожу, формуют под давлением различные изделия. Твердый непла-стифицироваиный ПХВ заменяет свинец и нержавеющую сталь при изготовлении химической аппаратуры, труб. Из ПХВ можно получать и волокна, которые используют для изготоелиптя фильтровальных тканей, рыболовных сетей, медицинского белья (хлорипо-вое волокно). Полихлорвинил используют также для электроизоляции, изготовления декоративных плиток, транспортерных лент, ia-щитной спецодежды, переплетов книг, предметов домашнего обихода, игрушек. [c.279]

    С каждым годом возрастает производство синтетических полимеров, т. е. высокомолекулярных соединений, получаемых из низкомолекулярных исходных продуктов. Быстро развиваются такие отрасли промышленности, как промышленность пластических масс, синтетических волокон, синтетического каучука, лаков (лакокрасочная промышленность) и клеев, электроизоляционных материалов и др. Промышленность пластических масс располагает в настоящее время большим количеством синтетических полимерных материалов с разнообразными свойствами. Некоторые из них превосходят по химической стойкости золото и платину, сохраняют свои механические свойства при охлаждении до —50 °С и при нагревании до +500 "С. Другие не уступают по прочности металлам, а по твердости приближаются к алмазу. Из синтетических полимеров получают исключительно легкие и прочные строительные материалы, прекрасную электроизоляцию, незаменимые по своим свойствам материалы для химической аппаратуры. Резиновая промышленность располагает теперь материалами, превосходящими по многим показателям натуральный каучук, одни материалы, например, газонепроницаемы, стойки к бензину и маслам, другие не теряют эластических свойств при температуре от —80 до -f300° . Новые синтетические волокна во много раз прочнее природных, из них получаются красивые, несминаемые ткани, прекрасные искусственные меха. Технические ткани из синтетических волокон пригодны для фильтрования кислот и щелочей. [c.19]

    Поливинилхлорид применяется для производства листовых и плиточных материалов, покрытий, кабельной изоляции, для изготовления труб и деталей аппаратуры, ограничено — для производства волокна. Практическое применение имеют сополимеры винилхлорида с винил иденхлоридом, винилацетатом, акрилонитрилом и другими виниловымк мономерами. [c.309]

    Рентгеновские лучи с давних пор применяются в медицине. Спектр поставил задачу повысить информативность медицинских исследований с помощью рентгеновских лучей, увеличить достоверность интерпретации изображений, снизить до минимума уровень лучевой, нагрузки на пациента и медицинский персонал, повысить производительность аппаратуры, сделав ее более удобной в использовании, словом, добиться, чтобы исследования стали эффективнее. Изображения внутренних органов больного могут передаваться по стеклянным волокнам на телеэкран. Есть и другие способы получить такую информацию. Тут на помощь могут прийти телевизоры или, например, звуковые эхотомоскопы. [c.35]

    Его получают термическим разложением некоторых углеродистых веществ. Стеклоуглерод — новый конструкционный материал с уникальными свойствами, не присущими обычньщ модификациям углерода. Стеклоуголерод тугоплавок (остается в твердом состоянии плоть до 3700 °С), по сравнению с большинством других тугоплавких матералов имеет небольшую плотность (до 1,5 г/см ), обладает высокой механической прочностью, электропроводен. Стеклоуглерод весьма устойчив во многих агрессивных средах (расплавленных щелочах и солях, кислотах, окислителях и др.). Изделия из стеклоуглерода самой различной формы (трубки, цилиндры, стаканы и пр.) получают при термическом разложении углеродистых веществ или прессованием стеклоуглерода. Уникальные свойства стеклоуглерода позволяют использовать его в атомной энергетике, электрохимических производствах, при изготовлении аппаратуры для особо агрессивных сред. Стекловидное углеродистое волокно, обладая низкой плотностью, высокой прочностью на разрыв и повышенной термостойкостью, применяется в космонавтике, авиации и других областях.  [c.428]

    Удаление целлюлозных волокон. В поступающем на переработку сульфитном щелоке содержатся в сильно меняющемся количестве (от 0,05 до 0,5 кг/м ) целлюлозные волокна. Как правило, это мелкие волоконца или осколки волокон, не удерживаемые в целлюлозной массе при отборе щелока. При проведении этой операции в сцеже были зафиксирораны случаи, когда унос волокна со щелоком превышал 1 кг/м . В современных условиях полной комплексной переработки всех главных компонентов сульфитного щелока с использованием сложной аппаратуры присутствие целлюлозных волокон может привести к серьезным технологическим затруднениям. При термическом воздействии эти волокна выполняют роль армировки, упрочняющей отлагающуюся на поверхности теплопередающих аппаратов минеральную или органическую накипь. Попадая в сепаратор, набухшие волокна приводят к опасным режимным нарушениям. Аналогичное действие волокон проявляется и при осветлении щелока в гидроциклонах. Присутствие волокон в дрожжевой биомассе отражается на перевариваемости продукта животными. [c.250]

    Синтетические полимеры используют в медицине для изго товления протезов сосудов, суставов, сердечных клапанов, хру сталиков глаза, различных тканей. Синтетические волокна при меняются в качестве шовного материала в хирургической практике. Созданы специальные полимеры, из которых изготавли ваются аппаратура для переливания крови, различные катетерь и медицинские трубки. В химии синтетических высокомолеку лярных соединений все большее развитие получает новое направ ление — химия медицинских полимеров. [c.312]


Смотреть страницы где упоминается термин ПАН волокон аппаратура: [c.396]    [c.294]    [c.129]    [c.6]    [c.53]    [c.197]    [c.696]    [c.254]    [c.88]    [c.315]    [c.509]    [c.296]    [c.549]    [c.567]   
Карбоцепные синтетические волокна (1973) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура для вытягивания волокна, Н. Кйпани, Д. Капелларо

Аппаратура для формования волокна

Матирование при формовании волокна аппаратура

Промывка штапельного волокна, аппаратур



© 2024 chem21.info Реклама на сайте