Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение круговое

    Различают разделенные штриховые меры длины — метры, рулетки, масштабные линейки разделенные круговые меры — вращающиеся диски калибры регулируемые и концевые шаблоны нормальные и предельные для измерения радиусов изгиба, геометрии кромок и другие [19]. [c.56]

    Преимущества круговой ТСХ по сравнению с обычной линейной ТСХ хорошо известны, и их легко продемонстрировать. Используя последние достижения в круговом методе, например и-камеры (см. гл. 4), значения обсуждаемых здесь параметров можно повысить па несколько порядков величины по сравнению с линейным методом. Производительность разделения круговым методом сравнима с производительностью разделения на капиллярных колонках в газовой хроматографии. [c.75]


    Для проведения сложных качественных разделений круговым методом можно приспособить F-камеру размером 100 X 100 мм. Большей точности можно добиться с помо- [c.98]

    В последние годы разработаны способы, позволяющие значительно повысить эффективность разделения и количественного анализа методам ТСХ за счет нанесения на пластины очень малых (до 100 нанограмм) проб, перехода к круговой ТСХ и применения сканирующих пластинку устройств, фотометрирующих и регистрирующих интенсивность спектров рассеяния или флуоресценции сорбированных соединений или работающих на иных физических принципах детектирования [156]. [c.20]

    Анализ с помощью плоскостной (тонкослойной, бумажной) Ш X технически осуществляется почти так же, как и препаративное разделение, и отличается от последнего лишь малым объемом разделяемой пробы. Пятна разделенных ГАС выявляются сравнительно просто визуальным наблюдением их свечения при УФ облучении или окрашивании после опрыскивания слоя специфическими реагентами [267, 268]. В аналитических работах метод ТСХ чаще всего применяется для качественной идентификации отдельных групп соединений по характеру окрашивания (свечения) и параметрам удерживания (величинам И ). Получение точных количественных данных о составе разделяемой смеси с помощью ТСХ обычно связано с определенными трудностями. Некоторые перспективы улучшения разделения и облегчения количественного анализа кроются в применении уже упоминавшейся высокоэффективной круговой тонкослойной ЖХ и сканирующих устройств, фотометрирующих интенсивность спектров рассеяния или флуоресценции разделенных соединений [156]. [c.34]

    В последнем случае после избирательной абсорбции одного или нескольких компонентов из газовой или паровой смеси проводят десорбцию — выделение этих компонентов из жидкости — и таким образом осуществляют разделение. Регенерированный абсорбент вновь возвращается иа абсорбцию (круговой процесс). [c.280]

    Процесс разделения происходит следующим образом. Сепарируемая жидкость подается в полость тарелкодержателя, откуда поступает через отверстия а в зазор между нижними тарелками здесь жидкость перемещается вокруг оси вращающегося барабана до планок 5 и 4. Затем она устремляется в вырезы б, через отверстия а расположенных выше тарелок попадает в образуемые ими зазоры и продолжает свое круговое движение до следующих планок 5 и 4. Направление движения сепарируемой жидкости (показано на рисунке стрелками) перпендикулярно направлению центробежных сил, что благоприятствует разделению. [c.241]


    По уравнениям, приведенным в гл. П1, минимальная работа, необходимая для выполнения кругового процесса разделения, охлаждения и т. д., будет равна [c.636]

    Вариантом круговой хроматографии является способ Маттиаса. Он удобен для разделения смеси веществ в том случае, когда одно вещество преобладает, а остальные содержатся в виде примесей. [c.142]

    Круговой дихроизм близок по природе к электронным спектрам поглощения. В отличие от ДОВ кривая КД имеет относительно более простую, гауссову форму максимума (положительного или отрицательного). Это облегчает определение длины волны поглощения и при перекрывании нескольких максимумов облегчает разделение сложной кривой на отдельные составляющие. Поэтому для спектроскопических целей предпочитают использовать метод КД, особенно для комплексных соединений. Полосы [c.202]

    Техника проведения хроматографии на бумаге. В настоящее время получили развитие следующие виды проведения хроматографического процесса на бумаге одномерная и двумерная (восходящая и нисходящая), круговая и электрофоретическая хроматография. Для успешного разделения необходимо, чтобы атмосфера камер, где проводится разделение, была насыщена всеми компонентами системы растворителей. Это насыщение обычно осуществляют, помещая на дно камеры чашку с обеими фазами системы растворителей или укрепляя на стенках камеры бумагу, смоченную растворителями. [c.115]

    Разделение газовых смесей для выделения одного или нескольких ценных компонентов смеси. В этом случае применяемый поглотитель должен обладать возможно большей поглотительной способностью по отношению к извлекаемому компоненту и возможно меньшей по отношению к другим составным частям газовой смеси (избирательная, или селективная, абсорбция). При этом абсорбцию обычно сочетают с десорбцией в круговом процессе. В качестве примеров можно привести абсорбцию бензола из коксового газа, абсорбцию ацетилена из газов крекинга или пиролиза природного газа, абсорбцию бутадиена из контактного газа после разложения этилового спирта и т. п. [c.11]

    Для более быстрого разделения применяют метод круговой хроматографии, в котором анализируемую смесь помещают в центр круглого листа фильтровальной бумаги, вырезают тонкую полоску по радиусу и погружают ее в растворитель. Прн этом полоска работает как фитиль, по которому поступает растворитель. Вещества разделяются в виде концентрических кругов. [c.42]

    Авторы [Л. 75] полагают, что при постоянных значениях А, С , а частицы диаметром 6а, соответствующим максимальному радиусу зоны сепарации Га (рис. 4-1), будут двигаться по периферии и попадать в грубый продукт разделения частицы диаметром бг, соответствующим минимальному радиусу зоны Г , будут двигаться по краю центральной трубы и, как правило, попадать в тонкий продукт частицы диаметром 6г<б<ба будут вращаться по своим круговым траекториям с радиусами гг<г<га, попадая В тонкий или грубый продукты вследствие тех или иных случайных факторов частицы диаметром б>ба будут попадать в грубый, а диаметром 6<б — в тонкий продукт. [c.117]

    Во время второй мировой войны для количественного разделения изотопов урана при разработке атомных бомб в США использовали масс-спектрометры. После войны для этих целей стали применять более эффективные методы, и большую часть из 1100 огромных масс-спектрометров пришлось демонтировать, но некоторые из них сохранили, и с их помощью было получено по нескольку килограммов чрезвычайно чистых изотопов примерно сорока различных элементов. Теория, описывающая действие этих огромных масс-спектрометров, заключается в следующем. Частица с массой т и зарядом е в магнитном поле напряженностью Н движется со скоростью и по круговой траектории радиусом г, причем центробежная сила уравновешивается отклоняющей силой действия магнитного поля [c.60]

    Разделение аминокислот методом радиальной (круговой) распределительной хроматографии на бумаге [c.235]

    Возможности этого метода Мартин [1811 обсуждал еще в 1956 г. Другие исследователи [117, 2061 описали различные устройства для циркуляционной газовой хроматографии. В этом случае газовая смесь, выходящая из хроматографической колонки, снова возвращается в нее, и эта операция продолжается до тех пор, пока не будет достигнуто заданное разделение смеси. Колонку обычно составляют из двух полукругов, круговой ток газа-носителя осуществляется при помощи насоса. Этот способ позволяет использовать короткие колонки, повышать нх разделительную способность, а также работать с летучими неподвижными фазами. [c.519]

    Приступая к отсчету на приборе, следует прежде всего внимательно рассмотреть его шкалу и определить цену делений, в том числе и самых маленьких. Допустим, что на основной круговой шкале, разделенной на 360°, мы обнаружили крупные деления, около которых стоят цифры О (или 90), 80, 70 и т. д. (рис. 34, а). Это значит, что цена больших делений равна 10 град. В свою очередь эти большие деления делятся на две части, каждая из которых, очевидно, равна [c.105]


    Формирование суппозиториев. Порцию разделенной массы выкатывают в шарик при помощи тех же приспособлений, что и при выделке бруска. Во время этой операции дощечка, взятая правой рукой за середину должна располагаться параллельно плоскости стеклянной пластинки, обернутой бумагой, и совершать круговое движение. После того как масса примет форму шарика, несколько размягчившись при этом, [c.282]

    Каждая частица жидкости будет двигаться по концентрически замкнутым траекториям с тем меньшей скоростью, чем больше расстояние от центра окружности. Слой, прилегающий к поверхности наружного цилиндра, будет неподвижен. Второй компонент также будет вовлечен в круговое движение, и результаты его целиком зависят от первоначальной ориентации компонентов. Если диспергируемая фаза (второй компонент) простирается от поверхности внутреннего цилиндра до поверхности внешнего цилиндра (рис. 4.8, а), то по мере вращения внутреннего цилиндра в Двумерной системе прямая полоса трансформируется в спираль, все время как бы удлиняясь и утоняясь. Расстояние между ближайшими витками спирали г называют толщиной полос, и оно может служить мерой разделения компонентов. Из схемы следует  [c.99]

    Дальнейшим усовершенствованием является метод двумерной хроматографии на бумаге. Преимущество этого метода основано на том, что вещества имеют различные значения в разных растворителях. Смесь наносят сначала в угол листа фильтровальной бумаги квадратной формы, и производят хроматографирование в одном направлении. Полученные при этом пятна подвергают хроматографическому разделению в другом растворителе, повернув лист бумаги на 90° (т. е. чтобы фронт двигался в направлении, перпендикулярном движению фронта при первом хроматографировании). Для более быстрого разделения применяют метод круговой хроматографии на бумаге анализируемую смесь помещают в центр круглого листа фильтровальной бумаги, вырезают тонкую полосу по радиусу и погружают ее в растворитель. При этом полоска работает как фитиль. Вещества разделяются в виде концентрических кругов. Количество вещества, которое может быть подвергнуто разделению на круглом листе обычной фильтровальной бумаги (ватман № 1), составляет 1—50 мкг, причем скорость перемещения фронта растворителя может быть повышена центрифугированием. При работе с большими количествами веществ, бумага перегружается и образуются шлейфы и хвосты . Меньшие же количества веществ трудно обнаружить. В количествах до 1 мг вещества можно разделять, нанося смесь в виде полос параллельно краю куска бумаги при этом вместо пятен получаются полосы. Для препаративного разделения можно использовать также толстую бумагу (например, ватман № 3). [c.22]

    Элементарный эффект разделения может быть существенно увеличен наложением осевого противоточного движения на круговое движение газа внутри ротора. При наличии противотока отдельная центрифуга подобна миниатюрному каскаду, и благодаря этому достигается значительный эффект разделения в осевом направлении. Аналогия, существующая между каскадом и дистилляционной колонной, весьма полезна для анализа разделительного процесса. [c.182]

    Для перехода от значений Rr, соответствующих "линейным" вариантам разделений, к значениям Rr в круговой (а точнее [c.162]

    Вопросы терминологии, описание градиентов и величин Rr, характерных для круговой тонкослойной хроматографии, даны в разд. 111, 2. Рассмотрим теперь важнейшие характеристики и эффективность, присущие этим вариантам разделения. [c.285]

    Данные, полученные ВЭТСХ, можно применять для ВЭЖКХ перенос данных возможен также при разделении круговым непрерывным методом с помощью многокомпонентного элюента. [c.10]

    Для просеивания и сортирования различных пищевых продуктов по крупности и плотности, а также для промежуточного отделения различных фракций (нежелательных примесей, зерна, риса и т. п.), для разделения по размерам таких продуктов, как огурцы, лимоны, рыба, используют виброгрохоты и сепараторы, по конструктивному исполнению и динамическому устройству аналогичные вибрационным питателям и конвейерам. Особенностью виброгрохотов и сепараторов является конструкция рабочего органа, выполненного наклонным, с круговыми колебаниями (рис. 283, а, д), горизонтальным с двумя самосинхронизирующи- [c.403]

    Перечисленные варианты ТСХ следует оценивать прежде всего с точки зрения целесообразности их применения для решения той или иной задачи. Если разделение смеси возможно несколькими методами, то следует выбрать тот из них, который позволит провести эксперимент наиболее быстро и с применением более простой аппаратуры. Для прицелочных опытов наиболее целесообразно применять круговую хроматографию, для решения сравнительно простых задач — восходящую хроматографию. И только в случае трудноразделяемых или многокомпонентных смесей применяют более сложную методику, в том числе градиентную хроматографию. [c.128]

    Редкоземельные металлы разделяют на бумаге, пропитанной нонообменни-ками или нитратом аммония. На сильнокислой катнонообменной бумаге 8а-2 можно разделить лантан, церий и неодим методом центрифужной круговой хроматографии, используя для элюирования 0,4 М раствор гликолята (pH 3,76). Смесь Се, Рг, N(1, 8т, и 0(1 разделяют на анионообменной бумаге Ватман ОЕ-20 в растворе 0,15 М азотной кислоты в 99%-ном метаноле (Л/ Се — 0,06 Рг — 0,12 N(1 — 0,21 51т — 0,40 0(1 — 0,60). Для разделения 10 редкоземельных элементов и иттрия использую бумагу, пропитанную 10%-ным раствором нитрата аммония. Эллюируют пробу смесью ацетона и эфира (1 1) с добавками роданида аммония и соляной кислоты, а обнаруживают опрыскиванием насыщенным раствором ализарина в 90%-ном спирте. Порядок расположения пятен элементов соответствует порядку возрастания их атомных масс. Значения / , увеличиваются в ряду Ьа (0,08) Се (0,11) Рг(0,16) N(1 (0,20) 5т (0,31) 0(1 (0,44) V (0,49) Оу (0,50) Ег (0,56) Ь (0,59) Тт (0,90). [c.242]

    Устройство простейшего, так называемого полутеневого, поляриметра показано на.рис. 18. Луч света от осветителя 1 попадает на неподвижно укрепленную призму Николя 2 (поляризатор) и выходит из нее в виде поляризованного луча. Затем он попадает на вторую призму Николя 3 (так называемый анализатор), которую можно вращать с помощью рукоятки 4, и далее, через лупу 5, в глаз наблюдателя. Прибор устроен таким образом, что если между поляризатором и анализатором луч не проходит через вещество, обладающее оптической активностью, то анализатор должен стоять на положении О, и при этом наблюдатель видит через лупу поле, разделенное на две половины, освещенные одинаково ярко. Есл1 же между поляризатором и анализатором помещена длинная стеклянная трубка 6, наполненная оптически активным веществом, то при прохождении через него света плоскость поляризации этого света изменяется на некоторый угол, и одна из половин поля зрения становится более яркой. Тогда поворачивают анализатор 2 таким образом, чтобы обе половины поля зрения снова стали одинаково яркими. Угол поворота анализатора (определенный по круговой шкале 7) указывает величину угла вращения плоскости поляризации света при прохождении через исследуемое вещество, т. е. величину оптической активности этого вещества. [c.156]

    В зависимости от положения пластинки и направления потока элюента различают восходящую, нисходящую и горизонтальную ТСХ. По технике работы выделяют фронтальный анализ (когда подвижной фазой служит анализируемая смесь) и обычно используемый элюционный вариант. Применяют также круговую (когда анализируемый р-р и р-ритель последовательно подаются в центр пластинки) и антикруговую ТСХ (когда анализируемый р-р наносится по окружности и элюент перемещается от периферии к центру пластинки), ТСХ под давлением (когда р-ритель под давлением пропускают через слой сорбента, покрытый плотно прижатой полиэтиленовой пленкой), а также ТСХ в условиях градиента т-ры, состава сорбента н т. п, В т. наз. двухмерной ТСХ хроматографич. процесс осуществляют последовате.чьно в двух взаимно перпендикулярных направлениях с разл. элюентами, что увеличивает эффективность разделения, С этой же целью применяют многократное элюирование в. одном направлении. [c.608]

    Радиальная круговая) хроматография высокой эффективности (РХВЭ) представляет собой метод разделения, сочетающий в себе многие из достоинств методов, в которых используются неподвиж- [c.42]

    Разработан [1029] комбинированный метод разделения ионов с использованием круговой тонкослойной хромато1 рафии. Все ионы (40 катионов и 19 анионов) разделены на 6 групп. При использовании в качестве растворителя смеси ацетон А М НСЬ— ацетилацетон (45 3 2) золото попадает в первую группу — группу хлоридов вместе с Ре(П1), Мо, У(У), Оа, ЗЬ(У), А8(1П), Те(1У), Ое. Хроматограмму проявляют 10%-ным водным раствором танни-вовой кислоты или смесью КТ -Ь ЗпСГз- Чувствительность 0,3 мкг Аи. Предварительно хлориды экстрагируют смесью метилизобу-тилкетона и амилацетата из раствора 7 М НС1. [c.75]

    Aii = 349 г) и ирб (молярная масса М2 = 352 г). Под действием центробежной силы тяжелая фракция ирв перемещается преимущественно к периферии, создавая частичное разделение изотопов урана в радиальном направлении. Чтобы вычислить элементарный коэффициент разделения, предположим сначала, что во вращающемся цилиндре находится моноизотопный идеальный газ. Результирующим движением газа будет хорошо известное изотермическое квазитвердое вращение или круговое движение. [c.181]

    Ряд фактов свидетельствует о конформационных переходах в лиембранах. Структурные изменения обнаруживаются при помощи флуоресцентных и парамагнитных меток, при измерении. двойного лучепреломления и рассеяния света, методом кругового дихроизма. В мембранах наблюдаются фазовые переходы — плавление липидов. Такой переход происходит вблизи О°С при нагревании мембран митохондрий и микросом от —40 °С. С помощью спин-меток в суспензии плазматических мембран, выделенных из фибробластов мыши, найдены температуры латерального разделения фаз в липидах. Для внешнего монослоя липидов такие переходы наблюдаются при 15 и 31 °С, для внутреннего — при 21 и 37 °С. [c.338]

    Конечно, все сказанное справедливо только для случая, когда поток прекращается при достижении центра фронтом раствор1ггеля (т.е. когда не производится отбор растворителя из центра). При этн.х условиях растворитель даже затопляет зону, характеризующуюся значениями К =0,8. в результате чего регистрируется большой пик в центре с некоторой степенью количественной недостоверности. Необходи.мо дальнейшее исследование факторов, влияющих на точный профиль градиента в двух круговых режимах. Описание достоинств и недостатков круговой тонкослойной. хро.матографии, которые приходится учитывать прн выборе соответствующего. метода разделения, можно найти в разд. 2 ("Разделение") настоящей главы. [c.170]

    Три варианта камер с принудительным потоком растворителя, используемые в 1985 г., представляют собой ненасыщенные сэндвич-камеры, в которых неизбежно расслоение подвижной фазы в слое во время элюирования. Единственным способом устранения этого вредного эффекта является продувка слоя потоком газа, содержащего пары многокомпонентной подвижной фазы, непосредственно перед началом элюирования (когда пластинка уже установлена в камеру и подготовлена к работе). Кроме того, влияния разложения подвижной фазы можно избежать, если вводить образец уже после начала элюирования (когда все образующиеся фронты уже прошли ми.мо стартовой линии). Центробежный плоскостной хроматограф с вращающейся пластинкой (Rota hrom, фирма Petazon Ltd, Цюрих, Швейцария) начал выпускаться в 1987 г. Прибор пригоден для обеспечения аналитических и препаративных разделений обеспечивает постоянство скорости потока через разделяющий участок длиной 10 см может использоваться в круговом режиме и (за счет прорезания соответствующих борозд в слое) в "антикруговом" или линейном режимах [298]. Метод плоскостной жидкостной хроматографии с принудительным потоком растворителя еще является новшеством. Разрабатываются удобные детекторы, дающие возможность регистрации разделения в реальном масштабе времени. Однако даже на данно.м этапе развития этот метод дает возможность сочетать (при сопоставимой продолжительности анализа) высокую разрешающую способность, свойственную для колоночной [c.273]

    Доводы за и ПРОТИВ метода центробежной (круговой) хроматографии. Доводы за 1) значительное улучшение разрешаюшен способности в интервале низких значений Rr (менее 0.5) по сравнению с достигаемой при линейном элюировании при сопоставимых затратах времени 2) легкая в эксплуатации, универсальная конструкция U-камеры, дающая точные, воспроизводимые результаты и возможность легкой количественной их оценки. Метод может использоваться для выбора условий разделения, которые будут пригодными [c.288]

    В заключительной части данного раздела, посвященного разделению, целесообразно дать сравнительный анализ эффективности линейного и круговых вариантов, для чего можно рассмотреть примеры, показанные на рис. 109. Все хроматограммы бьши получены с использованием тех же самых образца, сорбента и растворителя менялись только способы элюирования. Необходимо учитывать, что фактическая разрешающая способность оказывается несколько более высокой, чем обнаруживается по зарегистрированному сигналу (поскольку сканирующие денситометры частично ее загрубляют). [c.296]


Смотреть страницы где упоминается термин Разделение круговое: [c.110]    [c.199]    [c.163]    [c.271]    [c.142]    [c.118]    [c.17]    [c.65]    [c.335]    [c.144]    [c.59]   
Хроматография на бумаге (1962) -- [ c.13 , c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте