Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура стеклования р,у-релаксационные процессы

    В области фазовых переходов (плавление, кристаллизация) также наблюдается резкое изменение теплоемкости полимеров. Эти процессы обычно изучаются методами адиабатной калориметрии (точность которой в результате применения электронных схем является достаточно высокой) в широком интервале температур. На температурных зависимостях теплоемкостей полимеров [10.6] проявляются характерные пики (рис. 10.17), которые с увеличением скорости нагревания сдвигаются в сторону повышенных температур (при этом высота их увеличивается). Такой характер изменения теплофизических свойств при переходе поливинилацетата (ПВА) из твердого состояния в жидкое обусловлен релаксационной природой процесса размягчения и связан с тепловой предысторией образцов. Так как температура стеклования ПВА равна 35° С, выдержка его при комнатной температуре равносильна хорошему отжигу. [c.267]


    Как известно [7], эластомеры характеризуются двумя основными релаксационными механизмами. Один из них, а-процесс (рис. 12.6), связан с молекулярной подвижностью свободных сегментов и цепей, не входящих в микроблоки надмолекулярных структур. Он ответствен за релаксационные процессы в переходной области от стеклообразного к высокоэластическому состоянию и за быструю высокоэластическую деформацию выше температуры стеклования. Другой механизм относится к Я--процессам (>,1, 2 и Хз), наблюдаемым на высокоэластическом плато и ответственным за медленную высокоэластическую деформацию. Эти релаксационные механизмы объясняются термофлуктуационной природой различных типов микроблоков (упорядоченных микрообластей) в эластомерах. Процессы Я-релаксации характеризуются различными временами релаксации с одной и той же энергией активации. В сшитых эластомерах кроме а- и Я-процессов при высоких температурах наблюдается химическая релаксация (6-процесс), а в полярных эластоме- [c.341]

    Ниже температуры стеклования релаксационные процессы затормаживаются (т- -оо) и полимер всегда находится в неравновесном состоянии. [c.41]

    По определению, температура стеклования — это температура, при которой скорость протекания релаксационных процессов оказывается равной скорости охлаждения (или разогрева). С увеличением температуры скорость релаксационных процессов возрастает. Поэтому увеличение скорости нагрева (или охлаждения) приводит к повышению температуры стеклования. Оценивать время, необходимое для наступления равновесного состояния при охлаждении или нагреве, приходится при определении продолжительности от- [c.80]

    С повышением температуры скорость релаксационных процессов возрастает. Поэтому увеличение скорости нагрева (или охлаждения) приводит к повышению температуры стеклования. Время, необходимое для установления равновесия при охлаждении или нагреве, приходится оценивать путем определения продолжительности отжига, обеспечивающей полную релаксацию внутренних усадочных напряжений в изделиях из пластмасс. [c.156]

    Температура стеклования данного полимера не является величиной вполне постоянной, так как релаксационный характер процессов деформации делает ее зависящей от скорости охлаждения, от характера механических 7 si Jo W W воздействий и некоторых других t,°  [c.583]

    Значения постоянных, характеризующих релаксационные процессы эластомеров ниже и выше температуры стеклования Тс [c.67]


    Некоторые исследователи считают, что процесс стеклования полимеров и неорганических стекол объясняется главным образом процессами структурирования физической природы, например в результате образования полярных узлов молекулярной сетки при понижении температуры. Вероятнее всего, процесс образования в линейных полимерах физических поперечных связей флуктуационной природы является не главным, а сопутствующим процессом, приводящим к дополнительной. потере сегментальной подвижности при понижении температуры. Например, бутадиен-нитрильные сополимеры содержат в цепи боковые полярные ни-трильные группы СЫ, которые способны образовывать поперечные физические связи между макромолекулами. Замечено, что чем больше концентрация в сополимере нитрильных групп, тем раньше происходит стеклование при охлаждении. Это явление не противоречит релаксационной теории стеклования, которая допускает, что низкомолекулярная жидкость, расплав полимера или эластомер изменяют структуру при понижении температуры. Структура, [c.86]

    Переход полимеров в стеклообразное состояние происходит при понижении температуры в результате протекания кинетического (релаксационного) процесса — стеклования. Если при этом действие внешних силовых полей отсутствует, то реализуется только процесс структурного стеклования полимеров. [c.58]

    Зависимость температур стеклования Т с и 7с соответственно от скорости охлаждения и частоты внешнего воздействия связана с релаксационной природой процессов. При этом механическое стеклование объясняется потерей сегментальной подвижности и определяется а-процессом релаксации. Этот процесс является главны.м релаксационным процессом в полимерах. [c.59]

    Бартенев Г. М., Зеленев Ю. В. О механизмах релаксационных процессов при температурах ниже и выше области стеклования. — В кн. Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках. М., [c.145]

    Метод РТЛ позволяет изучать механизм радиолиза полимеров и явления термолюминесценции, а также типы ловушек и особенности захвата зарядов. С помощью метода РТЛ можно определять значения температур структурных переходов (температуры стеклования, плавления и т. д.) в интервале 77—300 К и производить анализ формы максимумов на кривой высвечивания РТЛ, что дает возможность оценить характер структурного перехода. Можно также определять энергию активации процесса молекулярного движения, так как максимумы, расположенные в области релаксационных переходов, при увеличении скорости разогрева смещаются в сторону высоких температур. Метод РТЛ позволяет исследовать степень однородности двухкомпонентных смесей высокомолекулярных соединений и определять, совместимы или не совместимы разные полимеры. С помощью метода РТЛ можно производить также анализ многокомпонентных смесей полимеров, содержащих низкомолекулярные наполнители. [c.235]

    В [9.13] было показано, что ПИБ может кристаллизоваться при растяжении и охлаждении. Переход, проявляющийся в закристаллизованном ПИБ ниже температуры стеклования, обусловлен переориентацией концов цепей, находящихся в пределах дефектов. Максимумы на кривой высвечивания эластомера СКИ-3 (рис. 9.3) можно отнести к следующим релаксационным процессам 1) переход при температуре — 63° С обусловлен размораживанием сегментальной подвижности 2) переход при температуре —113° С связан, как и в случае ПИБ, с вращением метильных групп 3) переход при температуре —147° С может быть связан с размораживанием подвижности отдельных атомных групп в основной цепи. [c.244]

    Характер температурных зависимостей объема и коэффициента объемного расширения полистирола (ПС) обусловливается релаксационными процессами при структурном стекловании и размягчении образцов (рис. 10.15 и 10.16). Для отожженного образца ПС при нагревании его со скоростью 0,5 К/мин в области размягчения наблюдается аномальное увеличение объема, чему соответствует пик на кривой коэффициента расширения. На изменение объема полимера оказывают влияние время и температура выдержки образцов вблизи области перехода. Чем больше скорость охлаждения образцов, тем выше их Тс. При длительном отжиге ПС при Т<7 с наблюдается релаксация структуры и длины образцов стремятся к своему равновесному значению. При этом чем ниже температура, тем медленнее протекает процесс релаксации струк- [c.266]

    Для большинства неориентированных полимеров (пластмасс, эластомеров) температура хрупкости лежит ниже 0° С (рис. 11.12). Выше Тхр полимер находится в твердом состоянии вплоть до температуры стеклования 7с, но разрушение полимера в этой области имеет квазихрупкий характер в связи с проявлением релаксационных процессов. Разрушение твердых полимеров в нехрупком состоянии связано с тем, что релаксационные процессы и соответствующие им механические потери играют существенную роль в процессах разрушения выше температуры хрупкости. [c.314]


    Таким образом, анализ данных, полученных при исследовании температурно-временных зависимостей комплекса важнейших механических характеристик сшитых и несшитых эластомеров, таких, как релаксация напряжения, вязкое течение, процессы разрушения (долговечность и разрывное напряжение), приводит к выводу, что выше температуры стеклования Тс и ниже температуры пластичности Тп температурная зависимость релаксационных процессов и разрушения характеризуется одним и тем же значением энергии активации, но различным для различных эластомеров. Эта же энергия активации характерна и для Я-процессов релаксации в эластомере, наблюдаемых на спектрах времен релаксации. Из этого следует, что механизмы релаксационных процессов и разрушения неполярных эластомеров определяются перестройкой и разрушением надмолекулярных структур — микроблоков. Различие между про- [c.347]

    Релаксационный характер деформации полимеров оказывает влияние на многие механические, диэлектрические и другие их свойства. При периодически действующей внешней силе деформация полимера в условиях, когда время релаксации значительно, в той или другой степени запаздывает по сравнению с действием силы. В результате этого при короткопериодических (высокочастотных) воздействиях полимер проявляет меньшую эластичность, чем при постоянно действующей силе. Вследствие релаксационного характера процессов деформации температура стеклования данного полимера не является величиной вполне постоянной. [c.220]

    Стеклование — это типичный релаксационный процесс и, как было показано, значение самой температуры стеклования зависит от времени охлаждения, частоты механического поля и т. д. [c.190]

    Основываясь на этом, Гиббс и Димарзио [5] полагают, что, несмотря на отсутствие кристаллической решетки, при некоторой достаточно низкой температуре, когда релаксационные процессы идут чрезвычайно медленно, стеклообразное состояние можно рассматривать как равновесное, термодинамически устойчивое состояние. Эта температура является нижним пределом значений температур стеклования 7с, достигаемых в эксперименте при бесконечно медленном охлаждении. [c.159]

    За температуру стеклования (Те) обычно принимают температуру, при которой имеет место диэлектрический -релаксационный процесс. Недостатком диэлектрического способа определения Те является то, что для многих полимеров диэлектрическая релакса ция зависит от частоты электрического поля (/) (рис. 33.51, [c.166]

    При использовании диэлектрических методов получают важные сведения, касающиеся дипольных моментов полимеров, а-, р- и у-релаксационных процессов, протекающих в них, конформации полимеров в стеклообразном состоянии, стереорегулярности полимеров, температуры стеклования полимеров. [c.169]

    Среди релаксационных процессов важнейшим для полимеров является а-релаксация (стеклование). При этом в зависимости от того, действуют на полимер внешние силы или нет,, наблюдается механическое или структурное стеклование, зависящие соответственно от частоты и скорости охлаждения. Ниже температуры структурного стеклования Гст механическое стеклование не наблюдается. Структурная и механическая релаксация являются наиболее универсальными методами исследования релаксационных переходов в полимерах и важно,, что имеется определенная взаимосвязь между механическими и структурными релаксационными переходами. [c.236]

    За температуру стеклования (7 ) обычно принимают температуру, при которой имеет место диэлектрический сс-релаксационный Процесс. Недостатком диэлектрического способа определения 7 является то, что для многих полимеров диэлектрическая релаксация зависит от н стоты электрического поля (/) (рис. 33.5), [c.166]

    В четвертой главе подробно освещен термомеханический метод определения температуры стеклования и текучести полимеров, проанализированы особенности интерпретации термомеханических кривых для аморфных и кристаллических полимеров, приведен расчетный метод определения по химическому строению полимера величины механического сегмента. Рассмотрены две основные концепщш механизма процессов застекловьшания полимеров - релаксационная и межмолекулярная. Рассматривается более универсальный, чем широко распространенный групповой подход расчета свойств полимера по их химическому строению, атомистический подход, с использованием которого получены аналитические выражения для расчета по химическому строению температуры стеклования линейных и сетчатых полимеров. Выполнен анализ влияния типов разветвлений линейных полимеров, а для сетчатых полимеров - числа звеньев между узлами сшивки, типа и строения этих узлов, наличия и вида дефектов сетки на температуру стеклования полимеров. [c.15]

    Влияние статической деформации сжатия (до 70%) и растяжения (до 200%) на Тс очень невелико, максимальные эффекты— это снижение Тс на 4—5°С при больших деформациях [220]. Ввиду того, что стеклование—релаксационный процесс, наложение на материал динамической деформации всегда приводит к сдвигу температуры стеклования в сторону больших температур, т. е. происходит так называемое механическое стеклование, характеризуемое температурой механического стекло-ВЗНИЯ Тмс Зависимость Тмс от частоты деформации v описывается приближенным уравнением [c.87]

    Однако подход к стеклованию как к релаксационному процессу, являющийся в настоящее время общепринятым, не исключает и термодинамическую трактовку этого явления. Основанием для такой трактовки служит то, что многие признаки перехода полимера в стеклообразное состояние — излом на графике зависимости удельного объема от температуры, скачкообразное изменение теплоемкости— делают этот переход подобным так называемым термодинамическим (фазовым) переходам 2 рода. Поэтому в последнее время получает все большее распространение новая точка зрения на стеклование, сочетающая в себе и кинетический и термодинамический подход. Она состоит в том, что экспериментально наблюдаемое значение Тс является лишь некоторым приближе-нием к температуре истинного фазового перехода Гг, который однако не может быть реализован за реально доступный промежуток времени. Согласно расчету Адама и Гибса, сделанному на молекулярной основе, Г2 лежит примерно на 60° ниже Гс и характеризуется тем, что конфигурационная энтропия цепей равна нулю, т. е. полностью прекращаются поворотные движения в цепях [8]. Этому состоянию соответствует бесконечно большая вязкость полимера, что в ранних работах служило количественным эмпирическим признаком стеклования. [c.43]

    В работе [145] этот метод был применен для исследования релаксационных процессов эластомера ЭКМС-30 при режиме заданной скорости растяжения. На рис. IX. 6 приведены температурные зависимости для линейного и сшитого образцов. В области стеклования (Гст 218 К) кривая 3 показывает зависимость в соответствии с уравнением Вильямса — Ланделла — Ферри (ВЛФ) и, как видно, это уравнение согласуется с экспериментом в интервале на 15 К выше Т . Расхождение с экспериментом с повышением температуры указывает на переход к другим релаксационным процессам, которые видны из данных, приведенных на рис. IX. 7 (Я-переходы). Обращает на себя внимание, что в области стеклования ( -процесс механической релакса- [c.221]

    В зависимости от того, является ли изменение свойств полимера под воздействием влаги обратимым пли необратимым после удаления влаги из материала, зюздействие воды на полимер определяют как физическое или химическое. Необратимые изменения свойств материала при химическом воздействии соировоя даются изменением химической структуры полимера. Физическое воздействие вызывает обратимые изменения свойств полимера при этом физическое воздействие может быть как поверхностным, так и объемным. Следствием проникновения воды в полимер в процессе объемной диффузии при обратимом воздействин является уменьшение взаимодействия мегкду макромолекулами, связанными друг с другом силами Ван-дер-Ваальса, что, в свою очередь, снижает прочность материала, увеличивает гибкость макромолекулярных цепей, в результате чего снижается температура стеклования и температура хрупкости, создаются условия для ускоренного протекания релаксационных процессов. [c.73]

    Дилатометрические исследования зависимости Гс от скорости изменения температуры показали, что при различных скоростях нагревания и охлаждения значения температуры переходов разных полимеров (пластмасс, каучуков) лежат в определенном интервале, который смещается с увеличением скорости в сторону высоких температур, т. е. структурное стеклование является релаксационным процессом. Обратная температура этого перехода н логарифм скорости связаны между собой линейной зависимостью вида Гс = С1— 2lgw (рис. 10.13), где Гс выражена в кельвинах, а между константами С1 и Са существует простое соотношение С2 = 0,031С1. С уменьшением скорости нагревания температура перехода снижается тем сильнее, чем выше Гс данного полимера. При этом АГс = 0,03Гс, где ДГс — смещение температуры перехода при изменении скорости в 10 раз Гс — температура размягчения (стеклования) при стандартной скорости нагревания 3 К/мин. Для пластмасс ДГс=10ч-12 К, а для каучуков 6—7 К. [c.264]

    Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный ме.ханизм), а затем при более высоких температурах — к образованию трещин серебра , стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых надрывов , являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния между температурой пластичности и температурой текучести Т . Разрушение в [c.289]

    При достаточно низкой температуре или больших скоростях разрушения термофлуктуационный механизм не реализуется и разрушение происходит по атермичесрюму механизму. Чем выше температура, тем интенсивнее проявляется термофлуктуационная природа прочности полимеров. При температурах выше температуры стеклования существенное влияние на процесс разрушения начинают проявлять релаксационные свойства (см. табл. 11.2). Так, в высокоэластическом состоянии ведущим процессом в разрушении является не термофлуктуационный разрыв химических связей, а преодоление межмолекулярных сил и процессы рела сации. Это явление подробно рассматривается в следующей главе. [c.331]

    Ползучесть. Ползучестью полимерных материалов называют процесс малой непрерывной пластической или высокоэластической деформации, протекающей в условиях длительного статического напряжения. [ олзучесть наблюдается иногда даже при темпаратурах ниже температуры стеклования и связана тоже с релаксационным характером леч ормаций. В отличие от полимерных материалов, у стали и большинства других металлов ползучесть становится заметной только при высоких температурах, а у полимеров она во многих случаях обна- [c.221]

    Из изложенного выше следует, что температуру стеклования можно определять по изменению различных физических свойств полимера в зависимости от температуры При этом, принимая во внимание релаксационный характер процесса стеклования, необходимо учитывать временной фактор (скорость н 1гревания или охлаждения, время действия силы и т д ). При достаточно медленном охлаждении или достаточно большом времени воздействия силы значения температур стеклования для одного и того же пол 11-и ера, полученные разными методами, обычно совпадают. Так, излом на кривых изменения уде.1Ьного объема с температурой происходит в той же области температур, что и резкое увеличение модуля. Это свидетельствует о сходстве характера молекулярных перегруппировок, происходящих при охлаждении и при высоко-эластических деформациях Однако при этом наблюдается и некоторое различие, в связи с чем возникли понятая структурного 1 механического стеклования [c.189]

    Подробно релаксационный характер процесса стеклования полимеров был изучен Ковачем На рис. 7/ приведены полученные им зависимости разности между объемом полимера и равновесным объемом при этой же температуре Ух. от времеии. Из рисунка видно, что с повышением температуры полимер быстрее [Гриближается к равновесному состоянию. Сдвигая кривые по оси времени, их можно совместить. Это означает эквивалентность вли-я [ия температуры и времеии на достижение равновесия, что является важным признаком релаксационного процесса (глава VII). Релаксационный характер процесса стеклования связан с медленностью перегруппировок цепей и надмолекулярных структур вблизи Тс- [c.191]

    Релаксационная концепция стеклования была впервые сформулирована одним из основоположников физики полимеров Кобеко [108]. Обычно при измерениях температуры стеклования Тст (при охлаждении) или температуры размягчения Гр (при нагревании) скорости охлаждения q— dTldt или нагревания w=dTjdt задаются в процессе опыта постоянными. Из релаксационной природы стеклования следует, что Гст и Гр с увеличением q или W должны смещаться к высоким температурам, чего никогда не наблюдается в случае фазовых переходов. [c.189]

    Если диэлектрическая спектроскопия описывает релаксационный процесс в битумах, относящийся к дипольно-сегменталь-ному, то с ее помощью можно характеризовать и стеклование битумов. Это предположение подтверждается тем, что значения определенных дилатометрически и диэлектрически температур стеклования битумов удовлетворительно совпадают (Т определена диэлектрическим методом как температура,при которой lgTт, равен 15,4 (см. рис. За, табл. I). Совпадение значений температур стеклования в битумах, определенных дилатометрическим и диэлектрическим методами, свидетельствует о справедливости уравнения (3) ВЛФ для битумов при условии определения температур приведения по методике, изложенной в работе [28]. [c.85]

    Р-Переходы также представляют собой, как правило, сложные процессы и их отнесение еще более затруднено. Для эпоксидных смол они исследованы более подробно [1, 66], однако полученные данные не позволяют сделать общих заключений. В ряде работ [61, 66—68] не обнарун<ено зависимости температуры максимума 3-перехода от концентрации узлов сетки. В то же время, по данным работ [25, 69], увеличение плотности сшивания эпоксидного полимера за счет уменьшения молекулярной массы олигомера или функциональности амина приводит к значительному увеличению Гр, причем авторы этих работ считают возможным по изменению 7 р контролировать степень отверждения полимеров, так как этот максимум лежит в области стеклообразного состояния, и при его определении не вызывает доотверждения полимера, которое происходит при нагревании недоотвержденного полимера выше температуры стеклования. Если правильно указанное выше отнесение р-перехода к движению оксиэфирного фрагмента —О—СН2—СН (ОН) —СНг— основной цепи молекулы [67], то повышение Гр может быть связано с общим уменьщением подвижности цепи при увеличении плотности сшивания. Релаксационные 7- и р-переходы слишком сложны и мало исследованы, чтобы можно было делать какие-либо общие заключения, однако они дают информацию о молекулярном движении в стеклообразном состоянии и в значительной степени определяют характеристики эпоксидных полимеров в этой области. [c.65]

    Для полимеров, отвержденных выше 7 с, значения То, полученные экстраполяцией кривых азн = /(7 зм) до пересечения нх с осью абсцисс, примерно одинаковы и близки к Гс. Поэтому для То, которая определяется как температура, при которой авн = О, практически совпадает с температурой стеклования полимера. Однако для образцов, отвержденных при температурах ниже Гс, Го также ниже Гс и превышает температуру отверждения примерно на 10—25°С. Разница между температурами ор-верждения и Го в этом случае объясняется усадкой полимера прц отверждении. При нагревании образцов, отвержденных при тем пературах ниже Гс, до температур, превышающих Гс, внутренние напряжения при 20°С увеличиваются и достигают уровня напряжений в образцах, отвержденных выше Г,, Это можно объяснить иротекаюихим доотверждением полимера и релаксационными процессами. В результате этого полимер приходит в механическое равновесие с подложкой прц температурах, превышающих Гс. [c.76]


Смотреть страницы где упоминается термин Температура стеклования р,у-релаксационные процессы: [c.62]    [c.14]    [c.38]    [c.191]    [c.110]    [c.288]    [c.189]    [c.191]    [c.135]    [c.191]   
Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.152 , c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Температура стеклования

Температуры стеклования с г Стеклования температура



© 2025 chem21.info Реклама на сайте