Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез коллагенов

    Коллаген — это наиболее распространенный белок позвоночных на его долю приходится почти 50% сухого веса хрящей и около 30% твердого вещества кости. В биологических системах коллаген встречается в виде пучков линейных волокон, которые по прочности иа растяжение почти не отличаются от стальной проволоки. В свете столь важной роли коллагена не удивительно, что многие серьезные заболевания связаны с нарушением его синтеза. Пожалуй, наиболее известна цинга, которая вызывается дефицитом витамина С. При этом нарушается синтез коллагена, так как в отсутствие витамина С пролин не окисляется до 3- и 4-оксипролина. Оксипролины содержатся только в коллагене поэтому их анализ в тканях отражает концентрацию коллагена в этих тканях. [c.410]


    В отличие от белков к-т-е- -группы фибриллярные белки группы коллагена растяжимы не более чем на 10%. Рентгенограммы белков этих двух групп также различны. Коллаген не встречается в растениях, но составляет около 7з всех белков организма животных, являясь составной частью хрящей, сухожилий, костей и кожи. Анализ аминокислотного состава коллагена показывает, что на 7з он состоит из глицина. Цистеин и триптофан в нем не встречаются, а количество серусодержащих и ароматических аминокислот очень невелико. Около 20% аминокислот в коллагене составляют пролин и оксипролин. Последняя аминокислота, так же как и оксилизин, встречается только в коллагене и родственных ему белках. Есть основания считать, что гидроксильные группы этих аминокислотных остатков появляются в белке уже после синтеза всей полипептидной цепочки. [c.249]

    Из органических высокомолекулярных соединений построено большое количество биологически и технически важных веществ. К ним относятся вещества, из которых состоят растения и природные волокна,— целлюлоза и другие полисахариды, шерсть, шелк к ним принадлежат также коллаген и эластин, основная часть белков — протеиды и нуклеотиды, гликоген и крахмал, натуральные полипрены — каучук и гуттаперча. Синтетические высокомолекулярные соединения охватывают область пластических масс и синтетических волокон. Химия высокомолекулярных соединений изучает методы синтеза, характеристики и исследования этих веществ, а также превращения природных и синтетических полимеров в их производные. Если учесть значение перечисленных выше соединений, то представляется обоснованным выделение химии высокомолекулярных органических соединений в особую область органической химии. В строении макромолекул полимеров, а также в их химических и физических свойствах и в методах идентификации и характеристики этих соединений имеется столько особенностей, что необходимо самостоятельное рассмотрение этих вопросов. Однако следует учесть, что как для высокомолекулярных, так и для низкомолекулярных органических соединений в основном характерны одни и те же типы связи атомов в молекуле. Таким образом, все законы органической химии в полной мере относятся также и к химии высокомолекулярных соединений. [c.11]

    С древнейших времен люди использовали природные ВМС белки и крахмал в пище, целлюлозу хлопка и льна, кератин шерсти для одежды, коллаген кожи для обуви и т. д. Лишь в конце XIX в. переработкой целлюлозы (превращением ее функциональных групп ОН) начали получать искусственные ВМС для производства искусственных волокон и пластмасс, а с начала XX в.— синтетические ВМС. В отличие от искусственных их получают не переработкой природных ВМС, а синтезом из соединений с небольшой молекулярной массой. Под руководством академика С. В. Лебедева в СССР впервые создается производство синтетического каучука, позже возникают производства синтетических волокон. [c.255]


    В некоторых случаях полипептидная цепь после завершения синтеза подвергается незначительной химической модификации, в результате чего в ней появляются некодируемые аминокислоты (не относящиеся к 20 обычным аминокислотам). Например, при синтезе белка коллагена на рибосомах образуется его предшественник - проколлаген, содержащий в большом количестве аминокислоты лизин и пролин. Эти аминокислоты, находящиеся в составе полипептидной цепи, подвергаются в ходе модификации окислению и превращаются соответственно в оксилизин и оксипролин, что приводит к переходу проколлагена в коллаген. [c.72]

    Во-вторых, лизин необходим для синтеза самого распространенного в организме белка - коллагена. Этот белок обладает высокой прочностью и эластичностью. Он входит в состав соединительной ткани, и поэтому его можно обнаружить в коже, в стенках сосудов, в мышцах, сухожилиях, хрящах, костях, во внутренних органах. В мышцах коллаген выполняет важную роль в процессе расслабления, которое, в свою очередь, определяет скоростные качества спортсмена. В процессе синтеза коллагена вначале образуется его предшественник - проколлаген, содержащий в большом количестве аминокислоты лизин и пролин. Затем эти аминокислоты, входящие в состав проколлагена, подвергаются окислению и превращаются соответственно в оксилизин и оксипролин, что приводит к переходу проколлагена в коллаген. Это окисление протекает с участием аскорбиновой кислоты - витамина С. [c.209]

    Некоторые ткани, например кожа, кровеносные сосуды и легкие, должны быть не только прочными, но и эластичными. Обширная сеть эластических волокон внеклеточного матрикса придает этим тканям необходимую им способность сжиматься после временного растяжения (рис. 12-51). Основной компонент таких волокон-эластин-гликопротеин с мол. массой 70000, который, подобно коллагену, необычайно богат пролином и глицином, но в отличие от коллагена содержит очень мало гидроксипролина и совсем не содержит гидроксилизина. Детали синтеза и созревания эластина еще мало изучены. Молекулы эластина секретируются во внеклеточное пространство, где образуют волокна и слои, в которых отдельные молекулы связаны мно- [c.229]

    Отсутствие в пищевых белках незаменимых аминокислот (даже одной) нарушает синтез белков, поскольку в состав практически всех белков входит полный набор аминокислот. Полноценность белкового питания зависит от аминокислотного состава белков и определяется наличием незаменимых аминокислот. Синтез и обновление белков в разных тканях происходят с разной скоростью. Так, белок соединительной ткани коллаген обновляется полностью за 300 дней, а белки системы свертывания крови - от нескольких минут до нескольких дней. [c.227]

    Во 2-м издании книги большее внимание уделено способам количественной оценки гибкости (жесткости) макромолекул, а также кинетическим аспектам афегатных и фазовых переходов в полимерных системах. Включен новый раздел, посвященный реологии растворов и расплавов полимеров. Коренной переработке подвергнуты также разделы, связанные с синтезом полимеров, описанием свойств и превращений природных волокнообразующих полимеров. Наряду с целлюлозой определенное внимание уделено хитину и хитозану, являющимся интересными волокнообразующими полимерами. Введен раздел, посвященный химии и физикохимии фибриллярных белков фиброину, кератину, коллагену. Примеры и задачи, приведенные во втором издании книги, взяты из исследовательской и технологической практики авторов книги. [c.9]

    Коллаген — основной фибриллярный белок кожи, сухожилий, хрящей, костей, роговицы глаза, стенок артерий и других тканей. Коллаге-новые фибриллы — важный компонент межклеточного вещества, цементирующего клетки в тканях (важными связующими веществами являются также гиалуроновая кислота и другие мукополисахариды). От большинства других белков коллаген отличается высоким содержанием остатков пролина и оксипролина, которые составляют 25% всех аминокислотных остатков, а также глицина, остатки которого составляют 34%. В процессе синтеза коллагена вначале образуется белок проколлаген. Он не содержит оксипролина и коллаген образуется пз него при гидроксилировании примерно половины остатков пролина. Для протекания реакции гидроксилирования необходим витамин С. [c.434]

    Остеобласт—клетка костной ткани, участвующая в образовании межклеточного вещества. Отличительной чертой остеобластов является наличие сильно развитого эндоплазматического ретикулума и мощного аппарата белкового синтеза. В остеобластах синтезируется проколлаген, который затем перемещается из эндоплазматического ретикулума в комплекс Гольджи, включается в секретируемые гранулы (везикулы). В результате действия группы специальных пептвдаз от проколлагена отщепляются сначала N-концевой, а затем С-концевой домены и формируется тропоколлаген. Последний в межклеточном пространстве образует фибриллы. В дальнейшем после образования поперечных сшивок формируется зрелый коллаген (см. гл. 21). [c.672]


    Однако если культура ведется при низкой плотности клеток в другой, ие совсем стандартной среде на протяжении нескольких недель, в ней неуклонно возрастает доля клеток, подвергающихся фундаментальному изменению вместо коллагена типа II, характерного для хряща, они начинают синтезировать коллаген типа I, характерный для фибробластов. Эти два типа коллагена (их можно различить с помощью флуоресцентных антител) являются продуктами разных генов. По-видимому, в таком опыте часть хондроцитов преЩ)а-щается в фибробласты. За один месяц почти все клетки, растущие в культуре с низкой плотностью, переключаются на синтез коллагена I. Это переключение, видимо, происходит внезапно, так как лишь в очень немногих клетках можно наблюдать одновременный синтез обоих коллагенов. [c.133]

    Биологические функции. Белки могут выполнять в живых организмах самые различные функции катализировать (ферменты) и регулировать (гормоны) биохимич. реакции входить в состав соединительной ткани (напр., коллаген) или мышц (актин, миозин) служить резервными питательными веществами (гранулы белка в цитоплазме) и др. Функции дезоксирибонуклеиновой к-ты — передача генетич. информации из поколения в поколение при клеточном делении. Этот Б. служит исходной матрицей при передаче информации внутри клетки. Рибонуклеиновая к-та также участвует в этом процессе, приводящем к синтезу специфич. белков клетки. Полисахариды могут служить резервными питательными веществами (напр., крахмал, гликоген), выполнять структурные функции (напр., целлюлоза полисахариды соединительной ткани), обеспечивать специфические свойства поверхности клеток (напр.1, антигенные полисахариды микроорганизмов) или защиг ту организма в целом (напрнмер, камеди и слизи растений). [c.128]

    Третья важнейшая функция белков — структурная. Клетка не может быть уподоблена сосуду, в котором попросту перемешаны в растворе все метаболиты п ферменты, — она разделена на множество органелл, защищенных белковьши, часто лппопротеиновьши, мембранами, наделенными ферментативной активностью, препятствующими свободному проникновению растворенных веществ. Внешняя оболочка клетки также является липопротеидной мембраной с весьма селективной проницаемостью. Большинство ферментов в клетке находится внутри тех или иных органелл. Поэтому и все биохимические процессы локализованы в определенных местах. Продолговатые, довольно крупные тела (длиной около 0,5 х) — митохондрии содержат в себе ферменты окисления и окислительного фосфорилирования, т. е. катализаторы реакций, в которых запасается энергия, потребляемая клеткой. Маленькие круглые образования (диаметром 150— 200 х ) — микросомы пли рибосомы содержат в себе ферменты, необходимые для синтеза белков. В ннх главным образом локализованы процессы синтеза белка. Задача, выполняемая структурными белками клетки, с одной стороны, чисто архитектурная белки служат материалом, из кото рого строится то или иное морфологическое образование. С другой стороны, они регулируют прохождение различных веществ внутрь органелл, т. е. осуществляют так называемый активный транспорт различных веществ, идущий часто против градиента концентрации, т. е. в сторону, противополон ную диффузии. В высших организмах, в которых произошла дифференциация и специализация тканей, некоторые структурные белки присутствуют в значительных количествах, образуя специальные типы тканей. Таков, например, коллаген, фибриноген крови, склеропротеин роговицы глаза и т. п. Изучение своеобразного молекулярного строения этих белков показывает его тесную связь с выполняемой ими функцией. В этом случае мы также имеем основание говорить о функциональной активности, разыгрывающейся на молекулярном уровне. [c.5]

    Механизм действия витамина Е двоякий. С одной стороны, это важнейший внутриклеточный антиоксидант, предохраняющий от окисления жиры и другие легкоокис-ляемые соединения, а с другой — переносчик электронов в окислительно-восстановн-тельных реакциях, связанных с запасанием освобождаемой при этом энергии. Он необходим для нормального обмена веществ в мышечной ткани. При недостатке этого витамина наступает атрофия мышечной ткани вследствие резкого снижения содержания сократительного белка мышц миозина и замены его коллагеном — инертным белком. Он имеет отношение к синтезу ацетилхолина, так как при его недостатке нарушаются процессы ацетилирования- Витамин Е связывает протромбин и замедляет свертывание крови. [c.164]

    Аскорбиновая кислота (витамин С) является участником многих окислительно-восстановительных реакций. В частности, аскорбиновая кислота принимает участие в реакциях гидроксилирования. В организме путем гидроксилирования происходит включение атомов кислорода в синтезируемые вещества. Таким синтезом является образование коллагена - самого распространенного белка организма. Выще отмечалось, что в процессе синтеза коллагена вначале образуется его предшественник - проколлаген, содержащий в больщом количестве аминокислоты лизин и пролин. Затем эти аминокислоты, находящиеся в составе проколлагена, подвергаются гидроксилированию и превращаются соответственно в оксилизин и оксипролин, что приводит к переходу проколлагена в коллаген. Это окисление протекает с участием аскорбиновой кислоты - витамина С. Учитывая широкое распространение коллагена в организме, его присутствие в связках, сухожилиях, участие в процессе мышечной релаксации, можно полагать, что введение в организм дополнительного количества витамина С должно вызывать повышение мышечной работоспособности. Гидроксилирование с участием аскорбиновой кислоты еще встречается при синтезе гормонов надпочечников - адреналина и кортикостероидов, выделяющихся при выполнении физических нагрузок и вызывающих благоприятные для мышечной деятельности изменения в организме на биохимическом и физиологическом уровнях. [c.211]

    При изучении путей синтеза N-ацетилированного или 0-ацетили-рованного коллагена Грин и др. [62] нашли, что описанный выше способ является избирательным методом N-ацетилирования. Для одновременного N- и 0-ацетилирования коллаген при охлаждении вводили во взаимодействие с уксусным ангидридом и эквимолярным количеством уксусной кислоты, причем соотношение ангидрид коллаген составляло 6 1, а продолжительность реакции — 6 суток. Результаты, полученные этими авторами при разных способах ацетилирования коллагена, приведены в табл. VI-8. [c.340]

    Кажущееся постоянство химического состава живого организма поддерживается за счет равновесия между процессами синтеза и разрушения составляющих его компонентов, т. е. равновесия между катаболизмом и анаболизмом. В растущем организме такое равновесие смещено в сторону синтеза белков, т. е. анаболическая функция преобладает над катабо-лической. В организме взрослого человека в результате биосинтеза ежесуточно обновляется до 400 г белка. Разные белки обновляются с различной скоростью — от нескольких минут до 10 и более суток, атакой белок, как коллаген, практически не обновляется за все время жизни организма. В целом период полураспада всех белков в организме человека составляет около 80 сут. Из них необратимо распадается примерно четвертая часть протеиногенных аминокислот (около 100 г), которая должна возобнов- [c.360]

    В связи с тем что для биосинтеза организм использует не готовые пищевые белки, а продукты их гидролитического расщепления — аминокислоты, процесс переваривания белков в организме настроен таким образом, чтобы лишить белки пищи их видовой и тканевой специфичности. До 97 % белков пищи под действием протеолитических пищеварительных ферментов желудочно-кишечного тракта (табл. 12.5) подвергаются мно гостадийному, селективному гидролизу, в результате которого образуются свободные аминокислоты, используемые в дальнейшем клетками организма для синтеза собственных, специфических белков. Белки опорных тканей — коллаген и эластин не подвергаются гидролизу. В процессах гидролиза сложных белков наряду с протеолитическими ферментами принимают участие ферменты, гидролизующие простетические группы углеводной, липидной и нуклеотидной природы. [c.373]

    Недавно ссжершеншо иное объяснение внезапному появлению раковин выдвинул Тоув [5]. Он подчеркнул роль синтеза коллагена у древних животных. Коллаген — главный элемент плотной фиброзной соединительной ткани, составляющей опорную основу [c.360]

    В бедной кислородом атмосфере реакции присоединения кислорода, требуюп ие от клетки больших энергетических затрат, будут прежде всего использоваться не для синтеза коллагена, а для жизненно важных процессов энергетического обмена. Поэтому в условиях бедной кислородом атмосферы коллаген будет синтезироваться только в тех случаях, когда он совершенно необходим организму скажем, для укрепления целома, мускулатуры, для развития сегментации. Только при повышении содержания кислорода в атмосфере могут появиться раковины, кутикулы и панцири. Конечно, их роль весьма существенна, но вое же их нельзя считать органами первостепенной важности, без которых немыслимо само существование животных. Это скорее физиологическая роскошь . [c.361]

    Основные вопросы, связанные с иммобилизацией белков. При рассмотрении вопросов, связанных с иммобилизацией белков, в первую очередь необходимо отметить, что при иммобилизации белок частично денатурируется, то есть, по наиболее общему определению, изменяет в какой-то степени свои первоначальные (нативные) характеристики. Эти изменения происходят как под воздействием физико-химических условий синтеза (температура, состав и концентрация модифицирующего раствора), так и в результате ковалентной межмолекулярной сшивки. Поэтому условия синтеза гетероповерхностного сорбента, предназначенного для анализа биологических проб с прямым вводом, следует подбирать таким образом, чтобы, с одной стороны, не происходило значительных изменений нативной глобулярной структуры белка для создания максимально однородного внешнего покрытия частиц, а с другой — чтобы уже иммобилизованный белок был лишен детерминантных групп (активных центров) для устранения возможных биоспеци-фических взаимодействий с содержащимися в пробе белками. Хотя для иммобилизации используются преимущественно инертные белки (например, сывороточный альбумин), их инертность весьма относительна. Но, по крайней мере, такое допущение принимается по сравнению со специализированными белками. Примерно в половине работ, посвященных созданию селективных электродов и сорбентов при иммобилизации ферментов, последние иммобилизуются совместно с альбуминами или коллагеном, либо на их матрицы. [c.544]

    Для изучеиия различных этапов синтеза коллагена в модельных системах широко иопользуют радиоизотоп-ный метод. Наличие в составе коллагена необычных аминокислот — оксипролина и оксилизина, не встречающихся в других белках, позволяет легко идентафициро-вать коллаген среди других белков животных тканей. Обнаружение С-онсипролияа после инкубация ткани с меченым по углероду пролином является наиболее существенным показателем синтеза коллагена в данной системе. [c.265]

    В области заживления ран усиливается синтез коллагеновых волокон, они разрастаются, но их структура лишена регулярности, свойственной нормальным колла-геновым волокнам. Коллаген вызывает адгезию и агрегацию тромбоцитов, что способствует образованию защитной пленки на поверхности раны и заживлению [c.389]

    Зрелые активно синтезирующие коллаген фибробласты, которые мы называем коллагенобластами, учитывая их основную функцию, дифференцируются из юных клеток и, вероятно, не способны к делению и дедифференцировке. Эти клетки появляются на 3-и сутки и к 6—7-му дню составляют основную массу клеток растущей ткани. Ультраструктура их подробно рассмотрена в следующей главе (см. раздел 2.2.2) в связи с особенностями синтеза и секреции коллагена. [c.20]

    Возможно, синтез коллагена III типа в быстрорастущих тканях объясняется тем, что благодаря наличию в его молекуле цистина он образует дисульфидные связи и является центром агрегации молекул в фибриллы [Adam М. et al., 1976]. То обстоятельство, что коллаген III типа подвергается воздействию трипсина, не влияющего на другие типы коллагенов [Miller Е. et al., 1976], по-видимому, способствует его быстрой деградации и облегчает перестройку и созревание эмбриональной и грануляционной ткани. [c.90]

    После выведения проколлагена из клеток во внеклеточной среде происходят дальнейшие этапы модификации коллагена. Концевые пропептиды на N- и С-концах молекулы последовательно отщепляются двумя различными эндопептидазами, которые называются амино- и карбокси-проколлаген-пептидазами. Таким образом проколлаген преобразуется в коллаген, т. е. в молекулы, способные к полимеризации. Однако небольшие концевые неспиральные пептиды (телопептиды) остаются и в зрелом коллагене, играя роль в межмолекулярном связывании. Обнаружено также, что пропептиды после отщепления воздействуют на клетку, тормозя синтез коллагена, т. е. участвуют в [c.93]


Смотреть страницы где упоминается термин Синтез коллагенов: [c.91]    [c.29]    [c.176]    [c.248]    [c.229]    [c.678]    [c.371]    [c.131]    [c.371]    [c.288]    [c.468]    [c.21]    [c.499]    [c.195]    [c.207]    [c.14]    [c.91]    [c.134]    [c.137]   
Биохимия Издание 2 (1962) -- [ c.434 ]




ПОИСК





Смотрите так же термины и статьи:

Коллагены



© 2025 chem21.info Реклама на сайте