Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пентен этил

    Рассмотренный механизм реакции соответствует наблюдению, что при пиролизе 3,3-диметил-2-бутилацетата образуется только 3,3-диметил-1-бутен >5 31, а при пиролизе 2,2-диметил-З-пентилацетата — только 2,2-диметил-З-пентен Это показывает, что пиролиз протекает через образование циклической переходной формы, претерпевающей перегруппировку, а не по радикальному или ионному механизму. [c.127]


    Тиофен, который в последние годы производится в промышленных масштабах, также легко может алкилироваться каталитическим путем. Алкилирование тиофена бутенами или пентенами, а так>ке исключительно пригодным для этого циклогексепом может осуществляться пропусканием тиофена и олефинов или циклоолефинов над катализатором кремневая кислота — окись алюминия при 200° или над твердой фосфорной кислотой, как было выше описано для получения кумола, или также с серной кислотой. [c.231]

    Амилфенол получают алкилированием большого избытка фенола приблизительно при 140° т /лет-амилсульфатом. При этом образуется главным образом м-трег-амилфенол. В смесях обоих амиленов, образующихся в качестве побочного продукта при производстве амилового спирта, триметилэтилен избирательно превращают с 62%-ной серной кислоты в грет-амилсульфат, в то время как 2-пентен при комнатной температуре остается непревращенным. Схема процесса представлена на рнс. 47. В смесителе 1 разбавлением концентрированной кислоты водой приготовляют 62%-ную серную кислоту. Теплота разбавления отводится циркуляцией слабой кислоты через холодильник 2. [c.225]

    Однако при температурах от 265 и до 375° С содержание пентена-1 в равновесной смеси, по данным указанных авторов, колебалось около 10—15% поэтому результаты этих опытов могут быть учтены только для приблизительной оценки равновесных соотношений между пентенами. [c.313]

    Метил-чис-2-пентен 4-Мети л-траис-2-пентен 2-Этил-1-бутен. . .  [c.484]

    Дегидроциклизацией изооктана при 550° С над молибден-хромовым катализатором получают ксилолы [289], но над окисью хрома получаются олефины [264]. Необходимо отметить протекающую здесь промежуточную изомеризацию [291]. При дегидроциклизации диизобутил- и диизоамил- [279, 284, 285] -декана, пентакозана [276] и керосина [286] образуются ароматические углеводороды. Бутилбензол дает нафталин [279] смесь 1- и 2-ок-тена превращается в о-ксилол ароматические углеводороды получаются при дегидроциклизации компактных олефиновых структур, таких как 2-этил-1-бутен и З-метил-2-пентен. Во всех вышеприведенных превращениях углеводороды, кипящие ниже исходного сырья, не образуются до тех нор, пока преобладают мягкие условия процесса [279]. [c.103]

    Содержание ароматических соединений в бензине каталитического крекинга можно объяснить либо дегидрированием производных циклогексана, либо более просто отщеплением алкильных групп от молекул замещенных ароматических углеводородов, содержащихся в сырье. Малая дегидрирующая активность алюмо силикатов и тот факт, что толуол не обнаруживается в продуктах каталитического крекинга гептана при весьма жестких условиях, заставляют еще более сомневаться в возможности образования ароматических соединений при каталитическом крекинге в больших количествах благодаря дегидроциклизации. Представляется вполне вероятным, что ароматические соединения образуются из низших олефинов, которые всегда содержатся в реакционной массе при расщеплении цепей парафиновых углеводородов. Это подтверждается, например, идентификацией простых одноядерных ароматических углеводородов в продуктах, полученных из пропилена, и-бутенов, пентенов и гексенов. [c.333]


    Пентен, этил-глиоксилат Этиловый эфир 2-окси-4-гептеновой кислоты ЗпСЦ в дихлорметане, 17° С, 24 ч. Выход 53% [628] [c.523]

    Количество насыш енных (неолефиновых) углеводородов, образуюш,ихся при гидрополимеризации, тем больше, чем выше концентрация серной кислоты. Так, например, в смеси пентенов с 98%-ной серной кислотой 70% исходного продукта превращаются в полимеризат, выкипающий в пределах 90—350° п состоящий в большей части пз парафиновых углеводородов. При этом растворимая в серной кислоте часть, выделяемая при разбавлении ледяной водой, оказывается сильно ненасыщенной и обнаруживает до трех и более двойных связей на молекулу. Реакция протекает по карбониум-ионному механизму. В присутствии концентрированной серной кислоты водород олефинов может переноситься из одной молекулы в другую, причем одна молекула превращается в парафин, а другая в диолефин, который еще раз может служить донором водорода, в то время как моноолефин является акцептором. [c.62]

    Главным источником изопрена является фракция s высокотемпературного пиролиза нефтяных фракций, подобно тому как это показано выше для бутадиена. Фракция s чрезвычайно сложна но составу и в зависимости от условий пиролиза (650—760°) содержит 15—25% изопрена. Другими главными составными частями являются пиперилин (нентадиен-1,3,), циклопентадиен и пентен-1. Чистый изопрен mohiho выделить экстрактивной перегонкой — способом, описанным выше для бутадиена. В качестве экстракционной среды здесь применяется, например, ацетон с 5% воды. Перед экстрактивной перегонкой богатые изопреном фракции отделяют обычной перегонкой от нипериленовой фракции . Температуры кипения отдельных представителей -фракции s следующие. [c.91]

    Амилнафталины представляют собой маслянистые высококипящие, термически стойкие жидкости. Их можно применять в качестве теплоносителя для производства смачивающих веществ и эмульгаторов, а ди- и иолиамилнафталины, кроме того, в качестве пластификаторов. Схема установки для алкилирования нафталина представлена на рис, 48. Сырьем для этого процесса служат смешанные хлористые амилы, образующиеся при хлорировании пентана, и 2-пентен — побочный продукт производства грег-амилфенола. Смесь хлористых амилов из бака 1 и расплавленный нафталин из емкости 3 поступают в реактор 2, оборудованный колонной 4, конденсатором 5 и двумя сепарато-раМ И 6 -а 8. Здесь половину общего количества хлористых амилов пере- [c.226]

    Термическая изомеризация. Как уже говорилось выше, в противоположность ионам карбония свободные радикалы редко подвергаются перегруппировке. Этим объясняется отсутствие скелетной избмеризации олефинов в термических условиях. С другой стороны, в таких жестких условиях, по-видимому, происходит изомеризация с миграцией водородных атомов. Например, пентен-1 при температуре 550—600° С изомеризуется до пентена-2 [21, 22]. В этом случае наиболее вероятен цепной механизм с участием аллильпых радикалов. [c.235]

    Изобутан можно рассматривать как особый случай. В результате реакции его с системой катион пентил-пентен в качестве промежуточного продукта будет получаться Сд. Так как это промежуточное соединение очень чувствительно к расщеплению, то при мягких условиях при таком расщсплонии образуются только С и С , а, следовательно, не увеличится количество продуктов диспропорционирования. Реакционная способность изобутана по отношению к системе катион пентил-пентен, по-видимому, близка к реакционной способности самого изопентана. Этим и объясняется, почему требуется большое количество изобутана [73] для полного подавления диспропорционирования изопентана. [c.29]

    Чтобы оказывать влияние при низких концентрациях, ингибитор должен обладать болео высокой реакционной способностью по отношению к системе катион пентил-пентен, чем сам изопентан. И, наоборот, требуемая концентрация ингибитора можот рассматриваться как мера этой реакционной способности. [c.29]

    В другом исследовании по изомеризации пентена-1 результаты значительно изменялись при различных способах приготовления окиси алюминия [541. Равновесная смесь при условиях, не вызывающих изменения структуры, и температуре 260° состояла из 14,8% пентена-1 и 85,2% пентена-2. Другая окись алюминия при этой же температуре и низкой объемной скорости жидкости дала смесь пентенов, содержащую 30,4% пентенов с разветвленной цепью. Применение в качестве катализаторов окиси алюминия, обработанной кислотой, при 360° дало 30% продуктов крекинга, отмечено образование до 28% полимеров. При обсуждении результатов авторы пишут Авторы считают, что механизм изомеризации и-олефинов при контакте с катализаторами аналогичен таковому алкили-ровапия, изомеризации и подобных им реакций — и что необходимые для этого ионы карбония легко образуются при условиях, существующих на поверхности различных образцов применявшейся окиси алюминия.. . В условиях, преобладавших на поверхности нейтральной или обработанной кислотой окиси алюминия, ионы карбония образуются путем присоединения протона по двойной связи олефина (см. гл. XXXI). [c.105]


    При алкилировании изобутана пентеном-1 при —20° в присутствии фтористого водорода получен алкилат, около 40% которого кипит при 140°. Анализ этой фракции методом инфракрасной спектроскопии показал наличие 2,3-диметилгептана [23]. Низкотемпературное (—30°) алкилирование гексеном-1 также дало хороший выход первичного продукта алкилирования около 40% алкилата, кипевшего при 163°, составлял [c.328]

    С 95 %-ной кислотой реакция сильно усложняется. В 1927 г. Орменди и Кревеи [38] при обработке смеси пентенов 96 %-ной кислотой обнаружили присутствие парафинов в смеси масел, отделенных от кислоты. Более низкокипящие фракции продукта, отделенные от неразбавленной кислоты, состояли в основном из парафинов. Теперь общепринято называть этот результат гидрополимеризацией. Более высококипящие фракции показывают непредельность, а масло, выделяемое нри разбавлении кислоты, имеет молекулярный вес и бромное число, соответствующие соединению jsHje (имеющему три двойных связи). Эти изменения, происходящие нри использовании концентрированной кислоты, более подробно исследованы Ипатьевым и Пинесом [23] они обрабатывали / -бутилены, изобутилен, ди- и триизобутилены, изопропилэтилен, нонен и додецен 96 %-ной кислотой при 0°. Масло, отделяемое от кислоты, содержало фракцию, выкипающую при 225—250°, которая оказалась вполне предельной, или парафиновой. [c.354]

    Эвелл и Хэрди [31 ] изучали изомеризацию пентенов при температурах 250—400° С в паровой фазе над окисью алюминия. Анализ продуктов, получавшихся в результате опытов этих авторов, показал, что при указанных условиях происходит лишь перемещение двойной связи в молекуле олефина углеводороды с разветвленным углеродным скелетом не были обнаружены (табл. 21). [c.311]

    Метил-1-пентен .. . 2-Метил-2-пентен. . . 1 ис-3-Метил-2-пентен. транс-3-Метил-2-певтев цис-4-М етил-2-пентен транс-4-Метил-2-пентен 2-ЭТИЛ-1-бутен. ... [c.315]

    Однако при воспроизведении описанной методики авторами этой книги методом ИК-спектроскопии был обнаружен только один димер, а именно 4-ме-тил-2,4-бис-(4 -окспфенил)-пентен-1. Продукт содержит при.меси и его не удается очистить даже многократной перекристаллизацией. [c.193]

    Как сообщают, пропилен димеризуется в 4-метил-1-пентен 1369] при комнатной температзфе при помощи 90—92% серной кислоты более сильная кислота дает более высококипящие комбинированные полимеры. При смешении с изобутиленом или с изоамиленом в присутствии серной кислоты пропилен сополи-меризуется с получением гептенов и октенов [370]. При помощи фосфорной кислоты при температурах ниже 300° С получаются правильные полимеры, а свыше этой температуры — комбинированные полимеры. С фтористым водородом при любых условиях получаются комбинированные полимеры [371]. Сложный полимер образуется также при термической полимеризации, которая имеет место при несколько более высокой температуре. Сравнение высокотемпературной термической полимеризации п 1олиыеризации, инищшрованной фосфорной кислотой, приведено в табл. И-17. Данные таблицы показывают, в каких размерах олефиновые полимеры превращаются в парафины, нафтены и ароматику. [c.110]

    Пентены изомеризуются с образованием разветвленных цепей легче, чем бутены. Эта реакция обычно не идет так быстро, как реакции, сопряженные с перемещением двойных связей. В случае пентенов она идет достаточно быстро с образованием рановес- [c.331]

    Окись углерода и водородный атом могут присоединяться с любой стороны двойной связи. Так, пропилен нри оксосинтезе образует смесь, состоящую на 60% из нормального и на 40% — из изомасляного альдегида. Олефпн с двойной связью как в конце, так и в середине молекулы, например пентен-1 или пентен-2, дают практически одинаковое распределение альдегидов Сд нормального и изомерного строения. Это свидетельствует о том, что происходит быстрая изомеризация. Незначительно разветвленные структуры присоединяют СО главным образом к крайнему углеродному атому изобутилен образует 95% изовальерьянового альдегида и только 5% триметилацетальдегида. [c.579]

    Синтез некоторых важных для нефтехимии углеводородов (этилена из этана, пропана н жидких фракций изобутилена из изобу-тана бутена и бутадиена из бутана пентенов из пентана бензола и толуола ароматизацией парафиновых и циклопарафиновых углеводородов стирола из этилбензола) относится к процессам термического и термокаталитического разложения и подробно рассматривается в курсе технологии нефти. Там же изложены процессы синтеза компонентов моторных топлив, например, изомеризация бутана в изобутан, метилциклопентана в циклогексан, превращение изомерных ксилолов, алкилирование для получения изооктана, этил-и изопропилбензола полимеризация в низшие жидкие полимеры (полимербензнн, изооктен и компоненты смазочных масел). [c.56]

    Алкилбензосульфонаты с различными алкильными цепями. При получении поверхностно-активных веществ этого типа (кроме тетрамеров пропилена) в качестве агентов алкилирования используют тримеры изобутилена и хлорпроизводные углеводородов из керосиновой фракции нефти, а также полимеры других алкенов, например пентенов. В качестве ароматического компонента иногда вместо бензола используют толуол. [c.342]

    Как следует из рассмотрения значений s углеводородов С4 и s (табл. 3, 4), экстрактивной ректификацией с полярными органическими экстрагентами могут быть успешно разделены бутан-бутеновые, бутен-бутадиеновые, бутадиен-бутиновые (бутени-новые), пентан-пентеновые и пентен-пентадиеновые смеси. Экстрактивная ректификация с органическими экстрагентами является неэффективной при разделении смесей 1,3-бутадиена с пропином и 1,2-бутадиеном (метилалленом). Удаление этих примесей должно осуществляться обычной ректификацией. Схема процесса выделения чистого 1,3-бутадиена из фракций С4, получаемых при дегидрировании, крекинге и пиролизе, таким образом, состоит из следующих узлов (рис. 3, 4) 1) экстрактивная ректификация от бутанов и бутенов, 2) экстрактивная ректификация от -ацетиленов С4, 3) ректификация от пропина, 4) ректификация от метилаллена (и других тяжелых примесей). [c.672]

    Метил-этил-третично-бутил-карбинол дал с выходом в 80% нормальный продукт дегидратации — 2,2,з-триметил-пентен-3 и с выходом в 20 продукт изомерации — 2,3,3-триметил-пентен-1 [c.54]


Смотреть страницы где упоминается термин Пентен этил: [c.18]    [c.294]    [c.304]    [c.310]    [c.314]    [c.316]    [c.294]    [c.304]    [c.310]    [c.314]    [c.316]    [c.227]    [c.231]    [c.254]    [c.247]    [c.408]    [c.108]    [c.296]    [c.327]    [c.345]    [c.314]    [c.46]    [c.111]    [c.673]   
Названия органических соединений (1980) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Некоторые гептены (3-гептен З-этил-2-пентен и 2-метил-1-гексен)

Пентены

Полимеризация этил пентена



© 2025 chem21.info Реклама на сайте