Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Улавливание инерционное

    Туманом называется дисперсная система, содержаш ая взвешенные в газе мелкие капли жидкости. Размеры капель от 0,01 до 1 мкм в зависимости от условий образования тумана [23]. Причиной возникновения тумана во многих производствах является конденсация паров и распыление жидкости. В ряде производств химической промышленности осуществляется очистка газов от тумана серной, фосфорной и соляной кислот, органических продуктов и др. Однако улавливание, например, сернокислотного тумана — операция сложная. Частички его настолько малы, что очень плохо улавливаются в простых осадительных, инерционных и циклонных аппаратах, обычно применяемых для очистки газов от пыли и брызг. В то же время капли тумана трудно проникают через границу раздела фаз, поэтому они плохо поглощаются в таких промывных аппаратах, как башни с насадкой и камеры с разбрызгиванием жидкости. [c.182]


    Отстойники, циклоны, мешочные фильтры, скрубберы и электрофильтры являются обычными устройствами для улавливания твердых частиц. Стоимость инерционных уловителей различного типа такая же, как и стоимость дорогостоящих циклонов. Во всех случаях оборудование в основном состоит из секций металлического листа, смонтированных и сваренных в каркас. Важным дополнением к этому является стоимость элементов фильтра (мещков) — для тканевых уловителей. Стоимость электрического оборудования, шин, изоляторов и встряхивателей следует также прибавить к стоимости электрофильтров. [c.548]

    Волокнистые фильтры подразделяют на 1) низкоскоростные с волокнами диаметром 5—20 мкм улавливание суб-микронных частиц происходит в результате броуновской диффузии и эффекта зацепления, причем эффективность процесса увеличивается с уменьшением скорости фильтрования, размера частиц и диаметра волокон 2) высокоскоростные с волокнами диаметром 20—100 мкм для выделения из газа частнц крупнее 1 мкм эффективность процесса к-рый основан на инерционном осаждении, возрастает с уве личением размера частиц и скорости фильтрования до опре деленной (критической) величины (обычно 1—2,5 м/с), при большей скорости начинается вторичный унос брызг уловленной жидкости из слоя в виде крупных капель  [c.600]

    Разработанный в СССР струйно-пенный пылеуловитель [302] состоит из конфузора с выходным патрубком, брызгоуловителя, корпуса со струйной и пенообразующими решетками, пода с входным патрубком, выпрямляющими лопатками и сливом жидкости. Аппарат отличается тем, что промывка газа в нем производится в двухфазном потоке, который па верхней решетке переходит в обычный пенный слой. Высокие скорости газа и развитая поверхность контактирования усиливают действия инерционных и молекулярных сил, способствующих улавливанию пыли. Эффективность очистки достигает 96—99% при улавливании пыли дисперсностью выше 1—2 мкм. [c.234]

    Как показывает практика, эффективность, рассматриваемой стадии улавливания ныли намного превышает эффективность инерционного улавливания в подрешеточной зоне. Эксперименты подтвердили, что описанный инерционный механизм улавливания пыли (механизм удара) является основным при работе пенных пылеуловителей. [c.166]

    Пенный аппарат можно рассматривать [227, 229] как двухступенчатый пылеуловитель. МеньШая часть пыли, преимущественно крупные фракции, обладающие наибольшей кинетической энергией, улавливаются в подрешеточном пространстве (рис. IV. , кривые II) Это происходит вследствие инерционного выброса, вызванного пере- меной направления газовых струй при прохождении их через решетку, последующего осаждения выделившихся пылинок на нижней смоченной поверхности решетки и дальнейшего смывания их протекающей через отверстия водой. Второй основной ступенью является промывание газа в слое динамической пены (рис. IV. , кривые I). Пылинки, попадающие в газовые пузырьки пены, в результате сильного трения и перемешивания газа с жидкостью ударяются о пленки жидкости и улавливаются ими. Эта ступень, в свою очередь, состоит из двух стадий улавливания частиц. Таким образом, можно выделить следующие стадии процесса 1) инерционное улавливание частиц пыли в подрешеточном пространстве 2) первая стадия улавливания частиц пыли в пенном слое (механизм удара) 3) вторая стадия улавливания частиц пыли в пенном слое (инерционно-турбулентное осаждение частиц пыли на поверхности пены). [c.163]


    При одинаковых размерах частиц степень улавливания в пенном слое значительно превышает степень улавливания в результате инерционного эффекта решетки. [c.164]

    Эффективность захвата при инерционном столкновении можно определить как долю частиц, равномерно распределенных в газовом потоке, которая может улавливаться стержнем или сферой из газового потока, площадь поперечного сечения которого равна лобовой площади улавливающего материала. Поэтому для нахождения эффективности необходимо определить траекторию частицы в этой части газового потока и, в частности траекторию частицы, которая будет строго касаться поверхности коллектора. В случае двухмерного течения необходимо знать расстояние от координаты X при д =—оо, на котором частица, начинающая движение, коснется поверхности коллектора т. е. эффективность улавливания при инерционном столкновении можно записать в виде [c.303]

    Т) с — к. п. д. улавливания перехватом lio—к.п.д. диффузионного улавливания Т)/ —к. п. д. инерционно-ударного улавливания Яо — общий к. п. д. t u—комбинированный к.п.д. [c.18]

    Циклоны отличаются от инерционных уловителей, описанных в главе У, тем, что в циклоне осуществляется многовитковое вращение потока. Пылеосадительные камеры и инерционные пылеуловители используются (за исключением редких случаев) для удаления крупной пыли — размером более 76 мкм, в то время как промышленные циклоны эффективны для улавливания частиц до [c.240]

Рис. УИ-6. Эффективность улавливания при комбинировании инерционного столкновения и перехвата для Кес=0,2 [207]. Рис. УИ-6. <a href="/info/378076">Эффективность улавливания</a> при комбинировании <a href="/info/1474206">инерционного столкновения</a> и перехвата для Кес=0,2 [207].
    Ланд [487] предположил, что эффективность диффузионного улавливания может быть найдена из я/Ре, в то время как Дэви 207] считал, что величина, обратная числу Пекле (1/Ре), приведет к таким же значениям эффективности, что и соответствующие значения параметра инерционного столкновения 1J3. Однако последнее предположение не позволило получить реальных оценок для улавливания путем диффузии (см. табл. VII.2). [c.314]

    Другой метод, предложенный Дэви [207], состоял в том, чтобы сочетать параметр инерционного столкновения с параметром диффузионного улавливания 1/Ре и подставлять новый параметр в соответствующее уравнение, например, в (УП.19), [c.316]

    Количественное определение комбинированного влияния давления и температуры на инерционное столкновение было сделано Штраусом и Ланкастером [829]. Это влияние на примере аэрозоля оксида бериллия с диаметром частиц 1 мкм в среде диоксида углерода, который образуется в газоохлаждаемом ядерном реакторе, показано на рис. УП-13. Хотя эффективность улавливания путем диффузии улучшается при увеличении температуры, влияние давления стремится перевесить этот эффект, и таким образом эффективность диффузионного улавливания уменьшается при высоких температурах и давлениях. [c.320]

    Влияние взаимодействия волокон. Волокна в слое фильтра расположены близко друг к другу, причем чем больше плотность набивки фильтра, тем выше скорость. Кроме того, при взаимодействии соседних волокон произойдет изменение спектра потока, обтекающего данное волокно. Оба этих взаимодействия увеличивают эффективность улавливания путем перехвата и инерционного столкновения. Однако при повышенных скоростях потока уменьшается диффузионное улавливание, хотя сглаживание линий обтекания может несколько снизить этот эффект. [c.330]

    Как было показано, процесс фильтрования газов с целью удаления твердых частиц можно рассматривать как сочетание механизмов инерционного столкновения, перехвата и диффузии. Такие дополнительные факторы, как действие гравитационных электростатических и тепловых сил также оказывают большое влияние на эффективность улавливания частиц. Установлено, что мелкие волокна являются более эффективными уловителями, чем крупные, так как они характеризуются более высокими параметрами инерционного столкновения и перехвата, а также большой общей площадью поверхности на единицу объема, что создает благоприятные условия для диффузии. Другие факторы (шероховатость и твердость поверхности волокон) также могут играть определенную роль. При плотной набивке волокон эффективность улавливания повышается за счет благоприятных интерференционных воздействий волокон. Однако туго набитые волокна способствуют увеличению перепада давления, что нежелательно с экономической точки зрения. [c.337]

    Производительность фильтровальной установки зависит в первую очередь от площади фильтрующей ткани. Согласно теории фильтрования, если основным механизмом улавливания частиц является диффузия, скорость прохождения газов должна быть невысока. Если же улавливание частиц осуществляется путем инерционного столкновения и перехватывания, необходима высокая скорость газа. [c.359]


    Лабораторные исследования проводили при температурах от 320 до 650 °С при скорости прохождения газов от 500 до 1000 мм/с. Большая плотность набивки волокон и высокие скорости прохождения газов способствовали увеличению эффективности улавливания это свидетельствует о том, что ключевым механизмом процесса улавливания является инерционное столкновение. При благоприятном режиме улавливания частиц в лабораторных условиях была достигнута устойчивая эффективность, превышающая 90%, в то время как в некоторых случаях отмечалась эффективность улавливания около 97—98%. [c.371]

    Простые фильтры имеют относительно низкую эффективность общая гравиметрическая эффективность составляет около 90%, типичная кривая эффективности улавливания различных фракций представлена на рис. 111-27. Низкая эффективность улавливания мелких частиц свидетельствует о том, что инерционное столкновение является доминирующим механизмом улавливания, поэтому данные фильтры удовлетворительно работают только в тех случаях, когда требуется относительно низкая степень очистки. [c.384]

    Инерционные пылеуловители. Действие пылеуловителей такого типа основ.ано на использовании инерционных сил, возникающих при резком изменении направления газового потока, которое сопровождается значительным уменьшением его скорости. Устанавливая на пути движения запыленного газа (например, в газоходе) отражательные перегородки или применяя коленчатые газоходы, изменяют направление движения газа на 90 или 180 . При этом частицы пыли, стремись сохранить направление своего первоначального движения, удаляются из потока. Для эффективного улавливания пыли скорость потока газа перед перегородками должна составлять не менее 5—15 м/сек. [c.229]

    Механизмы улавливания частиц в скрубберах и в фильтрах идентичны инерционное столкновение, перехватывание и диффузия они подробно обсуждены в гл. VII. Большое значение при [c.393]

Рис. IX-1. Оптимальный размер капель для улавливания с помощью инерционного столкновения (в простой оросительной башне [801]) Рис. IX-1. <a href="/info/40536">Оптимальный размер</a> капель для улавливания с помощью <a href="/info/1474206">инерционного столкновения</a> (в простой оросительной башне [801])
    Другое предложение Бумера [108] касалось использования акустического генератора вместе со скруббером Вентури типа S-F, что способствовало поверхностной кавитации в точке распыления жидкости и увеличению эффективности улавливания путем инерционного столкновения. [c.534]

Рис. 1Х-5. Оптимальный размер капель для улавливания путем инерционного столкновения в центробежном скруббере с разбрызгиванием [405] Рис. 1Х-5. <a href="/info/40536">Оптимальный размер</a> капель для улавливания путем <a href="/info/1474206">инерционного столкновения</a> в <a href="/info/94702">центробежном скруббере</a> с разбрызгиванием [405]
    Приведенные кривые свидетельствуют о том, что наиболее эффективно улавливание капель размером около 100 мкм капли большего размера ухудшают процесс инерционного столкновения, в то время как капли меньшего размера уносятся потоком газов. Кривые показывают также увеличение эффективности центробежного скруббера по сравнению со скруббером гравитационного орошения особенно для улавливания частиц размером от 1 до 10 мкм. Улавливание частиц путем диффузии не очень эффективно за ис- [c.399]

    Все скрубберы, рассмотренные в предыдущих разделах, используются для улавливания частиц размером от I мкм. Однако для удаления частиц размером менее микрона скруббер должен распылять жидкость до мельчайших брызг. Такие капли будучи достаточно малы, чтобы иметь низкие параметры инерционного соударения, в совокупности обладают весьма больщой поверхностью для осуществления процесса диффузии. [c.412]

    Улавливание частиц. Степень влияния термофореза или теплового осаждения может быть рассчитана по уравнениям, приведенным на с. 535 сл., в то время как влияние инерционного взаимодействия может быть выведено из уравнений (1Х.2—1Х.4). [c.417]

    Основными механизмами процесса удаления частиц нри фильтровании на тканевых фильтрах являются инерционное столкновение, улавливание и диффузия. Расскажите об особенностях каждого механизма процесса и о степени важности каждого из них. Прокомментируйте качественно взаимодействие их между собой и покажите, как знание механизма процесса помогает в выборе материалов фильтра. [c.581]

    Абсорбция 30%-ным раствором уротропина Улавливание в инерционном пылеуловителе [c.199]

    Цемент 6 0,3 0,1 Улавливание в инерционном пылеуловителе 90 [c.199]

    Для газопереработки можно рекомендовать грубоволокнистые фильтры. Они работают при скорости фильтрования 0,05—1 м/с в значительной степени на инерционном режиме. Набивка из грубого лавсана или какого-либо другого материала обеспечивает улавливание частиц крупнее 1 мкм. Толщина волокна нити — от 5 до 25 мкм. [c.363]

    В сульфатном отделении за сушилкой сульфата аммония установлен пылеуловитель инерционного типа для улавливания пыли сульфата аммония, уносимой вентилятором. Эта пыль растворяется в водном растворе, по мере насыщения солью раствор выводится из пылеуловителя в сборник. [c.46]

    Механические пылеуловители (пылеотстойные или пылеосадительные камеры, Инерционные пыле- и брызгоуловители, циклоны и мультциклоны). Аппараты этой группы применяются обычно для предварительной очистки газа. Пылеосадительные камеры улавливают частицы размером более 40—50 мкм, их эффективность не превышает 40—50%. Инерционные пылеуловители используют для улавливания пыли с размером частиц более 25—30 мкм. Циклоны позволяют улавливать пыль с размером частиц 10—100 мкм. [c.357]

    В большинстве пылеулавливающих устройств обычно несколько упомянутых выше процессов одновременно участвуют в очистке газового потока, хотя чаще всего только один из них я1вляется основным при осаждении частиц определенного типа. Та к, процесс фильтрации основан на инерционном и прямом захвате и Броуновской диффузии. Однако Броуновская диффузия играет доминирующую роль в удалении частиц субмикронных размеров, тогда как инерция и прямой захват являются основными механизмами улавливания частиц микронного размера. В этом процессе важную роль могут играть также электростатические силы, поскольку заряженные частицы могут индуцировать заряд на незаряженной фильтрующей среде. [c.24]

    Конструкция щестиступенчатой модели с концевым фильтром, разработанная в институте Баттель 575], представлена иа рис. П-20. Эффективность улавливания каждой ступени значительно отличается друг от друга. Как показано для четырехступенчатой модели Мея (рис. П-21), отсечка на каждой стадии не очень резкая, и для шестиступенчатой модели возможно значительное перекрывание областей между ступенями. Однако каскадный инерционный пылеуловитель является единственной конструкцией, позволяющей отбирать пробы капель и определять распределения по размерам с минимальной коагуляцией. [c.95]

    Первое значительное исследование инерционного столкновения было предпринято В. Селлом [750], который экспериментально определил распределение скоростей, изучая линии тока в воде, движущейся вокруг тел различной формы (сфера, цилиндр и плоская пластина) диаметром каждое 100 мм. Используя экспериментальные линии тока, Селл рассчитал траектории частиц при условии, что частицы обладали массой, но были безразмерными, определяя их ускорение. Селл нашел, что эффективность улавливания может быть охаражтеризо ваиа безразмерным выражением тьЦРО, идентичным параметру инерционного столкновения. [c.304]

    Альбрехт [6] и последуюш ие исследования показали, что с помошью расчетов можно предсказать такое значение параметра инерционного стблкновения фкр, ниже которого эффективность улавливания путем инерционного столкновения равна нулю. Для цилиндров Альбрехт дает значение г )кр = 0,09 без учета вязкого пограничного слоя. С учетом этого слоя Лэнгмюр [489] получил фкр = 0,27. Последующие расчеты, сделанные Лэнгмюром и Блод- [c.305]

    Более общий подход рассматривался Фридлендером [275, 279], который использовал уравнение Смолуховского. В нем скорость улавливания описывается в виде суммы члена уравнения, описывающего механизм диффузии [закон Фика, уравнение (VII.38)], и члена, описывающего инерционное столкновение. Уравнение оказалось слищком сложным для того, чтобы можно было осуществить его полное решение, но были найдены частные решения, относящиеся к случаям когда либо диффузия, либо инерционный захват преобладали в общем механизме процесса. [c.316]

    Если частицы с уменьшаюш,имися размерами и движущиеся с постоянной скоростью приближаются к пылеуловителю, то эффективность улавливания путем инерционного столкновения и перехвата уменьшается с размером частиц, тогда как улавливание путем диффузии улучшается. Таким образом, при определенных условиях можно предсказать размер частиц, для которых эффективность улавливания будет минимальной. Такие минимальные значения были указаны в теории фильтрации Лэнгмюра [489] , Дэви [207], Стайрманда [801] и Фридландера [275], они легко могут быть найдены при дифференцировании уравнения (VII.51), вторая производная которого имеет положительное значение [425] . [c.318]

    Хотя влияние температуры на эффективность инерционного столкновения, перехвата или диффузии специально не изучали, однако его М0Ж1Н0 лредоказать с помощью члена уравнения, зависящего от температуры в уравнении (VII.10), от эффективности перехвата в уравнении (VII. 16) и от коэффициента диффузии и эффективности диффузионного улавливания в уравнениях (УП.25) и (VII.41). Результаты расчетов с использованием названных уравнений приведены на рис. УП-12 [834].  [c.319]

    Когда скорость газового потока через фильтр невелика, момент инерция даже крупных частиц может быть нед остаточиым для их улавливания путем инерционного столкновения. В таком случае осаждение под действием силы тяжести может играть важную роль в улавливании пыли, благодаря относительной продолжительности пребывания газового потока в фильтре. Так, гравитационное осаждение представляет собой основной механизм улавливания в случае, когда частицы диаметром 1 мкм проходят через фильтр с волокнами диаметром 10 мкм и со скоростью менее [c.321]

    Поскольку диаметр капель жидкости, образующихся в распылительных скрубберах, равен 0,1—1 мм, частицы, улавливаемые этими каплями, сравнительно велики, поэтому основными механизмами улавливания являются перехватывание и инерционное столкновение. Стайрманд [801] рассчитал, что оптимальная эффективность улавливания путем инерционного столкновения для ка- [c.394]

    Эффективность улавливания частиц, по размеру, меньших, чем частицы, улавливаемые в простом башенном скруббере с разбрызгиванием, может быть повышена путем увеличения относительной скорости капель жидкости и потока дымовых газов. Воздействие на капли жидкости возрастает при использовании центробежной силы вращающейся струи газов в отличие от гравитационных сил, действующих в простом скруббере. Например, когда газы движутся с тангенциальной скоростью 17,5 м/с в радиусе 0,3 м, центробежная сила составляет 100 гс (980 Н). Джонстоун и Робертс [405] рассчитали эффективность улавливания твердых частиц каплями различных размеров под влиянием силы, равной 980 Н, путем инерционного столкновения (рис. IX-5). [c.399]

    Для создания дополнительной циркуляции газа сопла располагают под некоторым углом к вертикальной плоскости. Как и в плоской помольной камере, материал измельчается при многократных соударениях частиц в точках пересечения струй и в общем вихревом потоке. Разделение измельченного материала по крупности частнц происходит в поле центробежных сил при поворотах потока в коленах 4 и 5 трубы. Крупные частицы отбрасываются к внешней стенке трубы и по правой вертикальной трубе вновь попадают в зону измельчения. Мелкие частицы, движущиеся у внутренней стенки трубы, выходят вместе с энергоносителем через жалюзи инерционного пылеразделителя в трубу 7 и далее во внешнюю систему улавливания (циклоны и матерчатый фильтр). В пылеразделителе крупные частицы, обладающие относительно большей кинетической энергией, отражаются лопатками жалюзей, а более мелкие частицы проходят между лопатками вместе с уходящим газовым потоком. По сравнению с мельницами с плоской камерой в трубчатых мельницах достигается большая однородность измельченного продукта. [c.701]

    Мокрые пылеулавливатели можно разделить на две группы. Для улавливания частиц размером более 2—5 мкм используют скрубберы (полые или с насадкой), мокрые циклоны, пенные и барботажные пылеустановки. Значительно усилить инерционное осаждение и, соответственно, обеспечить улавливание субмикронных аэрозольных частиц можно в скоростных пылеуловителях (трубах Вентури). [c.353]


Смотреть страницы где упоминается термин Улавливание инерционное: [c.170]    [c.307]    [c.543]    [c.17]    [c.6]   
Аэрозоли-пыли, дымы и туманы (1972) -- [ c.180 ]

Аэрозоли-пыли, дымы и туманы (1964) -- [ c.180 ]

Аэрозоли - пыли, дымы и туманы Изд.2 (1972) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Улавливание

Эффективность инерционного улавливания в полых



© 2024 chem21.info Реклама на сайте