Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение и свойства синтетических полимеров

    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]


    Наибольшее значение среди химических добавок имеют различного рода природные и синтетические высокомолекулярные соединения (полимеры), молекулы которых построены многократным повторением тех или иных определенных структурных единиц. Будучи по свойствам и строению весьма разнообразными, полимеры имеют и ряд общих свойств. [c.31]

    Установление химического типа белков (и только белков ) является для чисто химических методов принципиально неразрешимой задачей, так как белки не являются классическими объектами органической химии. Они обладают практически неограниченной химической потенцией, и их исключительность состоит не в особой склонности к тем или иным, вполне определенным и характерным только для них химическим реакциям, а, напротив, в их универсальности. Химическое поведение белков характеризуется необозримо широким спектром действия, несопоставимым по своему функциональному многообразию с действиями любого другого класса молекул живой и неживой природы или соединений, синтезированных человеком. Именно благодаря универсальным биохимическим свойствам белков назначение генетического аппарата любого живого организма сведено только к их синтезу. В органической химии аналитические методы основаны на эмпирическом тестировании реакций, на выявлении тех химических особенностей, которые присущи лишь данному типу молекул или атомных групп. Со времени Бутлерова считалось незыблемым, что такому условию удовлетворяют все синтезируемые соединения. Не явились исключением здесь и жиры, углеводы и нуклеиновые кислоты. Поэтому определение типов их молекулярного строения на чисто химической основе не встретило непреодолимых осложнений. Подчеркнем, что сказанное относится ко всем природным и синтетическим полимерам, в том числе и к ближайшим искусственным аналогам белков -полиаминокислотам. Таким образом, предпринятые после Фишера попытки решить с помощью органической химии структурную задачу белков не достигли и не могли достичь цели. История химии белка данного периода скорее свидетельствует об обратном - имевшее место увеличение количества химических данных о белках сопровождалось ростом неопределенности в понимании их химического строения. Изучение на такой основе белков не приближало, а, напротив, уводило в сторону от решения этой типичной по своей постановке для синтетической органической химии задачи. [c.65]

    В учебнике в достаточно компактной четкой форме излагается на современном уровне обширный по тематике материал. Особое внимание уделено строению макромолекул и физической структуре полимеров как основе для понимания структуры и свойств синтетических полимеров и высокомолекулярных компонентов древесины. Рассмотрены процессы синтеза полимеров, в том числе биосинтеза природных полимеров. Детально излагаются свойства синтетических полимеров, используемых при получении разнообразных материалов и изделий на основе древесины и продуктов ее переработки. Учебник содержит необходимые сведения по анатомии древесины и строению клеточной стенки. Значительное место отводится изложению теоретических основ процессов химической переработки древесины и ее компонентов. [c.2]


    Таким образом, жизнь характеризуется химической индивидуализацией молекул, не имеющей особого значения в обычной химии. Биологические молекулы и макромолекулы имеют строга определенные состав и химическое строение, в отличие, скажем, от синтетического полимера, всегда представляющего собой некую смесь макромолекул различной длины с различными дефектами строения. Свойства данного белка индивидуальны и определенны, свойства синтетического полимера имеют смысл усредненной характеристики, ибо к нему неприменим закон постоянства состава. [c.55]

    Еще недавно стереохимия была одной из самых отвлеченных теоретических областей. Ныне она приобрела и большое практическое значение. Было установлено, что свойства полимеров существенно зависят от их пространственного строения. Это относится как к синтетическим полимерам (полистирол, полипропилен, синтетический бутадиеновый и изопреновый каучуки), так и к природным высокомолекулярным соединениям — полисахаридам, белкам, нуклеиновым кислотам. Известно также, что пространственное строение оказывает большое влияние на физиологические свойства веществ. Сказанное определяет значение стереохимии для химии и технологии полимерных материалов, для биохимии и молекулярной биологии, для фармакологии и медицины. [c.13]

    Свойства синтетических полимеров зависят как от величины их молекулярной массы, так и от строения звена. Большинство синтетических полимеров — органические соединения, среди них различают карбоцепные полимеры, у которых в цепь атомов звена входят только атомы углерода, и гетероцепные полимеры, цепи которых содержат также атомы кислорода, азота, серы и т. д. За последние годы большое значение приобретают элементоорганические, в особенности кремнийорганические, полимеры, содержащие в цепи звена атомы кремния и кислорода. Помимо строения цепи, большое влияние на свойства полимеров оказывают функциональные группы (С1, F, N, ОН), содержащиеся в звеньях. [c.287]

    Свойства синтетических полимеров зависят как от величины их молекулярной массы, так и от строения звена. Большинство синтетических полимеров — огранические соединения, среди них различают карбоцепные полимеры, у которых в цепь атомов звена входят только атомы углерода, и гетероцепные полимеры, цепи которых содержат также атомы кислорода, азота, серы и т. д. [c.256]

    ГЛАВА ПЕРВАЯ СТРОЕНИЕ И СВОЙСТВА СИНТЕТИЧЕСКИХ ПОЛИМЕРОВ [c.7]

    Пространственное строение и другие свойства синтетических полимеров в растворе отвечают состоянию статистического клубка и описываются усредненными параметрами. Молекулярная поворотно-изомерная теория синтетических полимеров, являющаяся составной частью статистической физики, была разработана в 1950-е годы М.В. Волькенштейном [47] и позднее развита Т.М. Бирштейном и О.Б. Птицыным [48] и П. Флори [49]. Основы теории фазовых переходов полимеров были заложены в 1968 г. И.М. Лифшицем [50]. Хотя белки являются полимерами и их пространственное строение также определяется поворотной изомерией, тем не менее механизм структурной организации и особенности нативных конформаций белковых молекул не могут быть рассмотрены в рамках отмеченных теорий, базирующихся на равновесной термодинамике и конфигурационной статистике полимерных цепей. [c.101]

    Полидисперсность. В отличие от низкомолекулярных соединений и природных полимеров синтетические полимеры не являются индивидуальными веществами, а представляют набор полимергомологов, то есть макромолекул одинакового строения, но разной степени полимеризации и, следовательно различной молекулярной массы. Это свойство получило название полидисперсности или полимолекулярности. Поэтому молекулярная масса полимера есть некая средняя молекулярная масса, определяемая средней степенью полимеризации  [c.375]

    В результате реакций присоединения атомов или групп атомов к ненасыщенным связям основной цепи макромолекул синтетиче-кого и натурального каучука изменяется строение основной цепи полимера, что сопровождается резким изменением его свойств, В макромолекулах синтетических каучуков в реакцию вступают также боковые винильные группы звеньев, соединенных в положении 1—2 или 3—4. [c.239]

    Помимо природных высокомолекулярных веществ в настоящее время в технике и быту применяют ряд синтетических высокомолекулярных продуктов. Сюда следует отнести синтетические каучуки и различные синтетические полимеры. Эти продукты, чрезвычайно разнообразные по химическому строению и свойствам, не только являются полноценными заменителями природных высокомолекулярных веществ, но и получают часто совершенно новое применение. Так, их используют для получения разнообразных пластмасс, в виде органического стекла, в качестве ионообменных материалов (ионитов) для очистки воды и выделения индивидуальных веществ из смесей, для изготовления деталей самолетов и автомобилей и даже корпусов малотоннажных судов. Показательно, что производство синтетических высокомолекулярных веществ значительно превысило производство не только традиционных конструктивных материалов, но и таких сравнительно новых материалов, как алюминиевые и магниевые сплавы, [c.419]


    Синтетические высокомолекулярные соединения называют также полимерными материалами, высокополимерами, или просто полимерами. Некоторые представители их обычно называют по исходным продуктам, из которых их получают к названию исходного вещества добавляют приставку поли-, например, полиэтилен, полипропилен, полибутадиен,полиизобутилен, поливинилацетат и т. п. Так как такие названия не дают представления о строении, свойствах и возможных химических превращениях, было сделано много попыток разделить все высокомолекулярные соединения на определенные классы и дать этим классам рациональные названия. [c.438]

    Молекулы, которыми занимается биофизика, характеризуются многими особенностями, отличающими их от молекул неживой природы. Белки — самые сложные из известных нам молекул. Будучи макромолекулами, белки и нуклеиновые кислоты не являются статистическими системами, в отличие от макромолекул синтетических полимеров. Это — динамические системы, своего рода машины, поведение которых определяется положением и функциональностью каждого элемента, образующего молекулу. Основная задача молекулярной биофизики состоит в исследовании специфических особенностей, определяющих строение и свойства биологических молекул. Физическая теория, с которой приходится иметь дело в молекулярной биофизике, есть теория строения и физических свойств этих молекул и одновременно теория методов исследования, применяемых в эксперименте. [c.9]

    Стереохимические особенности определяют и свойства других полимеров хорошо известными примерами являются изотактические полистирол и полипропилен, каучук с его цис-строением полимерной цепи. Не рассматривая подробно стереохимии синтетических высокомолекулярных веществ, отошлем интересующихся для несколько более подробного ознакомления к книге Основы стереохимии [1] и к обзору [11]. [c.635]

    Высокомолекулярные соединения представляют собой вещества, состоящие из огромных молекул с молекулярным весом порядка от десятков до сотен тысяч у синтетических полимеров, а у природных соединений — даже до миллионов. Величина молекулярного веса наряду со строением молекулы определяет важные в практическом отношении свойства высокополимеров — механическую прочность, эластичность, способность к набуханию и растворению и др. поэтому методике определения молекулярного веса уделяется большое внимание. [c.69]

    Эти особенности молекулярного строения ПЭВД и ныне отличают его от всех известных синтетических полимеризационных полимеров. Рассмотрим подробнее результаты изучения молекулярной структуры и основных свойств этого полимера. [c.115]

    Пластмассы газонаполненные — сверхлегкие пластические материалы, получаемые на основе различных синтетических полимеров. Напоминают структуру застывшей пены. П. г. характеризуются высокой тепло-, звуко- и электроизолирующей способностью. Химические и механические свойства П. г. и их теплостойкость в значительной степени определяются свойствами исходных полимеров, а изоляционные характеристики — особенностями физического строения. П. г. могут быть получены из всех известных в настоящее время полимеров. Различают П. г. с замкнуто-ячеистой структурой (пенопласты) и открыто-пористой структурой (поропласты), в которых элементарные ячейки или поры сообщаются между собой и с окружающей атмосферой. П. г. применяют в авиастроении, в мебельной промышленности, при строительстве жилых домов и др. [c.102]

    На первый взгляд может показаться, что рассмотренный механизм структурирования белковой цепи принципиально не отличается от кристаллизации низкомолекулярных соединений и образования у некоторых синтетических полимеров линейных регулярных форм. Это, однако, не так, хотя в обоих случаях процессы осуществляются посредством случайных флуктуаций и взаимодействий валентно-несвязанных атомов. Существенное различие состоит в том, что кристаллизацию малых молекул в насыщенном растворе и формирование ближнего порядка (одномерного кристалла) у искусственного полимера можно представить равновесными процессами, т.е. путем обратимых флуктуаций и непрерывных последовательностей равновесных состояний. Сборку же белковой цепи в трехмерную структуру нельзя даже мысленно провести только через равновесные положения системы и без привлечения бифуркационных флуктуаций. Механизм пространственной самоорганизации белка имеет статистико-детерминистическую природу и поэтому является принципиально неравновесным. Его реализация невозможна без необратимых флуктуаций, а его описание - без установления связи между свойствами макроскопической системы и внутренним строением ее микроскопических составляющих. С позиции равновесной термодинамики подобные явления просто не могут существовать. [c.99]

    Тесная связь химии древесины с химией и физикой синтетических полимеров объясняется общностью свойств природных и синтетических полимеров, с одной стороны, а также широким использованием синтетических полимерных материалов при различных способах переработки древесины, с другой. Кроме того, древесина и другое растительное сырье при химической переработке дают различные низкомолекулярные продукты, которые используются в качестве исходных мономеров для синтеза полимеров. Для понимания химического строения, физической структуры, свойств и химических превращений основных компонентов реве- [c.5]

    Свойства полимеров зависят от их строения, которое, в свою очередь, определяется условиями синтеза. Наиболее ценными свойствами обладают полимеры с регулярным, т. е. строго повторяющимся, строением. Например, мономерное звено изопренового каучука (синтетического или натурального) содержит двойную связь и может иметь цис- или тракс-конфигурацию  [c.413]

    Адсорбционные свойства углеродных адсорбентов — графитов, саж, активных углей, углеродных волокон и мембран — обусловлены особенностями их строения размерами кристаллитов углерода в скелете адсорбента, структурой аморфного углерода, химическими соединениями углерода с другими атомами (в основном с кислородом и водородом [38—42]), а также степенью шероховатости поверхности, наличием и структурой пор. Наиболее сильно развита пористость у активных углей, получаемых из природных материалов [43, 44], и у так называемых молекулярно-ситовых углей, получаемых термическим разложением синтетических полимеров. Размеры пор молекулярно-ситовых углей довольно однородны и очень малы [1—4]. [c.40]

    Появление новых синтетических хорошо кристаллизующихся полимеров привлекло внимание В. А. Каргина к изучению зависимости механических свойств полимеров от их фазового состояния. Им был выполнен совместно с Т. И. Соголовой цикл систематических исследований механических свойств кристаллических полимеров. Этими работами были установлены закономерности деформирования таких полимеров в широком интервале температур, но в пределах их кристаллического состояния, в зависимости от химического строения полимеров и их молекулярного веса. В этих работах были выдвинуты также представления о процессе холодной вытяжки кристаллических полимеров (образование шейки) как о фазовом превращении полимера в механическом анизотропном силовом поле. Представлял также интерес цикл исследований температурных переходов полимеров с использованием для этих исследований термомеханического метода, который был осу- [c.11]

    Физико-механические свойства всех синтетических полимеров можно связать с их химической структурой. Главными факторами, определяющими эти свойства, являются тип и распределение химических связей в молекуле полимера, ее симметрия и пространственное строение, а также молекулярный вес полимера. [c.235]

    В последнее время стереохимия приобрела также большое значение в теории и практике учения о высокомолекулярных веществах. Оказалось, что свойства синтетических полимеров в значитатьной степени зависят от их пространственного строения. Получение определенных стереорегулярных форм полимеров является ныне одним из важнейших путей повышения качества искусственных материалов. [c.9]

    Типовые вязкоупругие свойства высокомолекулярных полимеров основаны на их структуре, которая определяется типом, размером и строением макромолекул. У синтетических полимеров макромолекулы представляют собой цепочки с линейными, разветвленными или сетчатыми цепями. Различные структуры молекул могут образовать основу для классификации полимеров, например, по ASTM 1418-78. Ниже в качестве примера приводится классификация полимеров по зависимости их структурно-механи-ческих свойств от температуры (DIN 7724)  [c.51]

    Углеводороды давно известны как хорошие диэлектрики. Например, у парафина высокое удельное объемное сопротивление— порядка 10 —10 ом-см и низкие диэлектрические потери. В качестве жидких диэлектриков широко применяются нефтяные масла (трансформаторное, конденсаторное и др.), представляющие собой смеси углеводородов различного строения. Как было показано выше (стр. 56), высокомолекулярные углеводороды, полученные синтетическим путем, должны такясе обладать хорошими электроизоляционными характеристиками ввиду отсутствия в структуре молекул полярных групп. Вместе с тем большие молекулярные веса синтетических полимеров и особенности их структуры обусловливают появленце свойств, которыми природные углеводороды не обладают. Например, полиэтилен, а также полученный за последнее время полипропилен по сравнению с парафином имеют значительно более высокую температуру плавления, большую твердость и обнаруживают такие новые свойства, как гибкость, прочность на разрыв, способность подвергаться экструзии и др. [c.92]

    Благодаря применению новых методов исследования, главным образом рентгенографии и электронографии, а также вискозиметрического, осмометрического и ультрацентрифугального методов определения молекулярных масс, оказалось возможным установить общность строения и свойств синтетических и природных высокомолекулярных соединений. Было показано, что природные и синтетические полимеры состоят ИЗ длинных нитевидных молекул, молекулярная масса которых достигает десятков и сотен тысяч. Накопление экспериментальных данных [c.51]

    Рассматриваемая здесь задача является качественно иной, имеющей смысл только для избранных, главным образом, природных аминокислотных последовательностей. Поэтому ее решение может быть вьпюлнено лишь на основе самостоятельной теории, учитывающей выработанную эволюцией конформационную специфику белков, а именно статистикодетерминистический механизм структурной самоорганизации и детерминистическую (в отношении как статических, так и динамических свойств) природу нативных конформаций белковых молекул. Стремление описать сборку белка с чисто статистических позиций, не учитывающих гетерогенности цепи и взаимообусловленности поведения макроскопической системы от внутреннего строения микроскопических составляющих, объясняется иллюзорным представлением о том, что в этом случае можно идти по уже проторенному для синтетических полимеров пути и тем самым избежать разработки несравненно более сложного статистико-детерминистического подхода. Однако традиционный поиск решения не отвечает самой сущности рассматриваемого явления, и, следовательно, все попытки дать чисто статистическую трактовку структурной самоорганизации белка следует признать, как отмечалось, обреченными на неудачу (см. разд. 1.3). [c.101]

    Стремление свести рассмотрение конформационных свойств природных аминокислотных последовательностей к анализу решетчатых моделей объясняется не только естественным желанием максимально упростить задачу. Не меньшее значение имело также то обстоятельство, что модели такого вида уже давно использовались в физике полимеров. Впервые и сразу же в квадратном и кубическом вариантах они были предложены в 1947 г. У. Орром [106] при изучении конформационных свойств синтетических гомополимеров и вскоре стали основой дальнейшего развития конфигурационной статистики полимерных цепей. Лишь спустя 30 лет решетчатые модели были опробованы Гё и Такетоми для белков [57] Моделирование сложного объекта с помощью простых схем может иметь физический смысл и быть оправданным только при одном непременном условии исследуемые макроскопические свойства этого объекта, а именно, самопроизвольное свертывание белковой цепи в компактную нативную конформацию, не должны определяться индивидуальными свойствами его микроскопических составляющих, т.е. конкретным химическим строением 20 стандартных аминокислотных остатков. [c.498]

    Биологические макромолекулы — белки и нуклеиновые кислоты — очень сложны. Их свойства в живых системах определяются всеми особенностями строения, в частности, тем, что эти макромолекулы являются информационными, они представляют собой тексты . Важно установить, что в поведении биополимеров связано с самим фактом их цепочечного строения, независимо от мнкретных атомных групп, входящих в состав макромолекулы. Простые неипформационные цепи синтетических полимеров служат моделями для исследования этой проблемы. [c.59]

    В другой работе Александер [283] относит к трудноразру шаемым синтетическим соединениям такие группы веществ пе стициды, полихлорированные бифенолы, синтетические полимеры поверхностно-активные вещества (ПАВ), азотсодержащие со единения и другие вещества, которые попадают в промышлен ные сточные воды. Совершенно очевидно, что автор выделяет группы синтетических загрязнителей, не придерживаясь какого бы то ни было принципа классификации и по физиологическим свойствам (пестициды), и по химическому строению (полихлор- [c.148]

    Процессы образования в полимерах поперечных связей под действием частиц высокой энергии и ионизирующего излучения представляют большой научный интерес в сравнении с процессами деструкции (см. гл. VIП-В), вызываемыми этими же воздействиями. Многие синтетические полимеры нашли практическое применение после того, как они были сшиты под действием радиационного облучения. Кроме того, образование поперечных связей дает возможность понять природу химических процессов, протекающих при облучении и могущих привести к улучгпенпю физических свойств полимера. Эти положения особенно бесспорны для процесса сшивания полиэтилена под действием радиации. До открытия методов радиационного сшивания не было известно простых способов образования поперечных связей в полимерах этого типа. Последующее развитие химических методов сшивания полиэтилена не снизило значительных преимуществ радиационного процесса. Однако первоначальным стимулом развития радиационно-химических исследований полиэтилена являлась нерспек-тива изучения этих процессов на полимере простого строения. [c.166]


Смотреть страницы где упоминается термин Строение и свойства синтетических полимеров: [c.12]    [c.337]    [c.25]    [c.255]    [c.56]    [c.13]    [c.555]    [c.474]    [c.148]    [c.124]    [c.257]    [c.25]    [c.255]   
Смотреть главы в:

Синтетические полимеры в полиграфии -> Строение и свойства синтетических полимеров




ПОИСК





Смотрите так же термины и статьи:

Полимеры синтетические

Полимеры строение

Свойства синтетического



© 2025 chem21.info Реклама на сайте