Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматограмма внешняя

    Введение такого критерия можно рекомендовать прежде всего потому, что на начальном участке хроматограммы внешние условия в наибольшей степени влияют на колонку и функция Ъв=1(к) в области малых значений к не- [c.84]

    В связи с бесцветностью газов и паров наблюдают за ходом разделения, как не трудно догадаться из предыдущего изложения, непрерывно исследуя газ, выходящий из хроматографической колонки, физическим прибором — детектором. Последний непрерывно измеряет концентрацию компонентов в месте выхода их из хроматографической колонки и преобразует концентрацию в электрический сигнал, который регистрируется самопишущим прибором (гальванометром или потенциометром). Получается на движущейся ленте самописца пикообразная или ступенчатая выходная кривая, которая играет ту же роль, что и окрашенная хроматограмма Цвета, хотя по внешнему виду с ней не имеет ничего общего. Не- [c.22]


    Для расчета хроматограмм применяют методы внешней калибровки, внутреннего стандарта (метод метки), внутренней нормализации. [c.237]

    Величина может изменяться в интервале О < Кг < I. При получении внешней хроматограммы исследование элюата можно проводить непрерывно, регистрируя концентрацию вещества в подвижной фазе. Отдельные вещества проявляются на хроматограмме в виде пиков (горы, полосы, см. рис. 7.7). При таких хроматограммах для оценки вещества служат объем или время, необходимое для элюирования веществ из стационарной фазы,,— удерживаемый объем или время удерживания. Стандартами для сравнения являются чистый растворитель — подвижная фаза или стандартное веще-> ство. [c.345]

Рис. 7.7. Схематическое представление внешней хроматограммы. Рис. 7.7. <a href="/info/1012491">Схематическое представление</a> внешней хроматограммы.
    Время, за которое частицы вещества достигают определенной точки стационарной фазы (внутренняя хроматограмма) или ее конца (внешняя хроматограмма), не постоянно, а следует статистическому распределению (кривая Гаусса). Форма кривой определяется процессами ди узии и нерегулярностью установления равновесия между веществом и стационарной фазой. Исходя из этих положений, можно сделать вывод, что ширина полосы зависит от слоя сорбента, на котором прошло разделение. Чем длиннее слой, тем шире полоса. [c.347]

    С увеличением размера зерен снижается сопротивление потоку и ухудшается разделение [ср. уравнение (7.3.3)1. Наиболее часто применяют зерна размером 0,01 и 0,05 мм. Зерна должны быть однородными по величине. Поверхность зерен должна быть шероховатой и пористой, соотношение внутренней и внешней поверхности должно быть наибольшим. Контрольным значением общей поверхности является 100 м /г. Частицы разделяемого вещества проходят разные отрезки пути в процессе разделения если частицы стационарной фазы неоднородны по размерам [уравнение (7.3.3)[, то происходит расширение зон на хроматограмме. Нерастворимость в подвижной фазе чаще всего используют в адсорбционной хроматографии для распределительной хроматографии выбор стационарной фазы ограничен. [c.349]


    В разд. 7.2 была описана принципиальная возможность обнаружения бесцветных веществ в табл. 7.8 дан обзор некоторых реагентов, применяемых для проявления бесцветных веществ. Проявление внутренней хроматограммы проводят без приборов. По внутренней хроматограмме трудно провести количественную оценку результатов, для этого применяют внешнюю хроматограмму. Хорошие результаты дает исследование элюата. Для этого необходимы определенные различия величин, характеризующих подвижную фазу и компоненты разделяемой смеси. Устройства для расшифровки смесей на выходе из колонки называют детекторами некоторые наиболее часто используемые в жидкостной хроматографии детекторы приведены в табл. 7.6. [c.353]

    Удерживаемый объем. В газовой хроматографии получают внешние хроматограммы, строя зависимость величины сигнала детектора (разд. 7.3.1.1) от времени. Газ проходит через установку с постоянной объемной скоростью, поэтому при построении зависимости по времени можно легко рассчитать объем газа-носителя. Проекция максимума пика на ось времени или соответственно объема дает величину так называемого времени удерживания t t или соответственно удерживаемого объема Удг Для соответствующего вещества (рис. 7.12). Для характеристики мертвого времени или мертвого объема разделительной колонки применяют вещества, нерастворимые в стационарной фазе или не адсорбируемые ею, например воздух. [c.362]

    Вторичные явления в осадочной хроматографии — это совокупность изменений внешнего вида осадочных хроматограмм во времени после их формирования в результате ряда физических и химических процессов (диффузии ионов осадителя, перекристаллизации осадков и образования растворимых или сложных малорастворимых комплексных соединений). [c.229]

    Разделяемые злементы Внешний вид хроматограммы (В порядке расположения зон) [c.237]

    Разделяемые ионы соответствующих редокс-систем) Состав сорбента Внешний вид хроматограммы (расположение зон сверху вниз) [c.257]

    Появляющиеся иногда на хроматограмме выбросы — острые пики, обусловленные влиянием внешних источников шума, удаляются до общей цифровой фильтрации, поскольку она неэффективно действует на эти выбросы. Одним из возможных решений этой проблемы является обнаружение таких выбросов по их ширине. При этом все пики, ширина которых меньше определенного значения, классифицируются как выбросы. [c.94]

    Основу такого интегратора составляет 16-разрядный микропроцессор с запоминающим устройством и периферийными схемами (входной усилитель, преобразователь напряжения, печатающее устройство, жидкокристаллический дисплей, клавиатура). Клавиатура размещается на передней панели интегратора и содержит клавиши данных, управления и контроля. Результаты хроматографического анализа печатаются встроенным термографическим печатающим устройством, которое при этом одновременно вычерчивает и хроматограмму анализируемой смеси. Здесь же находится разъем для внешнего включения интегратора. Стандартные программы управления, контроля и обработки газохроматографического сигнала зашиты заводом-изготовите-лем в память микропроцессора и не могут быть изменены в процессе работы. В них запрограммированы алгоритмы обработки сигналов детектора, интегрирования и разделения сложных пиков в некоторых моделях предусмотрена подача команд внешним устройствам (автоматическим дозатора.м, переключателям в газовых схемах хроматографов и т. д.), осуществление контроля работы хроматографа. [c.103]

    Варианты, основанные на однократной газовой экстракции, из всех, используемых в ПФА, в силу простоты технического оформления анализа применяются чаще других. К этим методам относятся абсолютная градуировка (или внешний стандарт) и внутренний стандарт. Существует два принципиально различных варианта абсолютной градуировки. Первый связывает площадь или высоту пика на хроматограмме, полученную в результате дозирования в хроматограф равновесного газа, с концентрацией вещества в анализируемом образце, т. е. So ( l), а второй — площадь пика с концентрацией вещества в равновесном газе — Sq ( q) [c.233]

Рис. 5.1-1. Разделение двух веществ А и В с использованием элюентной хроматографии. й — развитие внутренней хроматограммы на неподвижной фазе 6 — внешняя хроматограмма, регистрируемая с помощью детектора. Рис. 5.1-1. Разделение <a href="/info/1696521">двух</a> веществ А и В с использованием <a href="/info/5722">элюентной хроматографии</a>. й — <a href="/info/1904841">развитие внутренней</a> хроматограммы на <a href="/info/5671">неподвижной фазе</a> 6 — внешняя хроматограмма, регистрируемая с помощью детектора.
    За время fм подвижная фаза проходит расстояние ги- Тогда время удерживания, соответствующее времени удерживания для внешней хроматограммы, выражается как [c.295]

    Хроматографируют при комнатной температуре продолжительность этого процесса — до 5 ч. Вынимают пластинку из хроматографической камеры, сушат при 110°С в течение 5 мин, охлаждают и опрыскивают раствором перманганата калия Р в серной кислоте (0,5 моль/л) ТР с концентрацией 1 г/л. Нагревают пластинку при 110°С до появления коричневых пятен и оценивают хроматограмму в дневном свете. Пятно, полученное с раствором Б, должно быть более интенсивным, чем любое пятно, соответствующее ему по положению и внешнему виду, полученное с раствором А. [c.195]


    Жуховицкий и Туркельтауб в серии работ [1, 50—53] теоретически и экспериментально обосновали применение принципиально нового варианта хроматермографического анализа (рис. II.5). Отличительной особенностью хроматермографии является то, что на движение хроматографической полосы по колонке одновременно оказывают воздействие перемещающееся температурное поле (как в варианте теплового вытеснения) и поток проявляющего газа-носителя. В основном варианте метода ( стационарная хроматермография ) направление движения температурного поля и газа-носителя совпадают, а градиент температурного поля направлен в сторону, противоположную направлению потока газа. В результате этого задний слой хроматографической полосы, находящийся при более высокой температуре, движется быстрее, чем передний, находящийся в области более низких температур. Это приводит к непрерывному сжатию полосы в процессе такого комбинированного воздействия потока газа и температурного поля. Получающаяся хроматограмма внешне похожа на проявительную, однако, вследствие указанного выше эффекта сжатия полосы, хроматографические пики получаются весьма острыми и концентрация компонента в их максимуме намного превосходит концентрацию вещества в исходной смеси отсюда следует перспективность хроматермографии при анализе микропримесей. [c.85]

    Внутренние и внешние хроматограммы. Вопрос получения внутренних или внешних хроматограмм при разделении веществ имеет важное значение для последующего качественного и количественного определения веществ. Внутренние хроматограммы получают в случае разделения или идентификации веществ непосредственно на стационарной фазе. В этом случае прояви ление хроматограммы заканчивается прежде, чем подвижная фаза доходит до конца слоя сорбента. Если же элюирование продолжают до тех пор, пока вещество вместе с подвижной фазой не достигнет конца стационарной фазы, и исследуют затем небольшие порции элюата, то получают внешнюю хроматограмму при построении зависимости концентрации элюата от его объема, (мл). В случае окрашенных компонентов или при отличии свойств компонентов (различной радиоактивности, способности абсорбировать УФ- или ИК-излучение) от свойств стационарной фазы внутреннюю хроматограмму можно определить визуально или зарегистрировать на стационарной фазе. Хроматограммы такого типа получают в бумажной и тонкослойной хроматографии, отчасти и в колоночной. Бесцветные соединения можно проявлять, химическим путем. Качественный анализ веществ проводят, оценивая за медление передвижения анализируемого вещества относительно движения фронта растворителя. Для этого сравнивают путь, пройденный веществом, с путем, пройденным фронтом растворителя, и отношение между ними обозначают через [c.345]

    На рис. 65 приведена картина изменения внешнего вида осадочной хроматограммы Hgb. Сначала со временем верхняя граница красной зоны выравнивается, затем эта зона поднимается вверх по колонке, образуя плотное красное кольцо, которое постепенно обесцвечивается. Эти явления обусловлены различной скоростью и направлением диффузии ионов Р с избыточной концентрацией в нижней части зоны и ионов Hg + — в верхней части, а также образованием бесцветных комплексных ионов [Hgl4 . [c.229]

    При лабораторных хроматографических исследованиях сложных многокомпонентных смесей необходим вычислительный комплекс с набором внешних устройств, обеспечивающих диалоговый режим обработки хроматограмм и выдачу результатов в требуемой форме. Диалоговый режим позволяет быстро переходить от одного метода к другому, изменять параметры алгоритмов. Новейшие системы для газохроматографического анализа, выпускаемые ведущими фирмами, состоят из трех важнейших узлов газового хроматографа, персонального компьютера, основой которого является микропроцессор, и принтера — печатающего устройства для вывода информации. Основная память персонального компьютера реализована на постоянном запоминающем устройстве (ПЗУ информацию, занесенную в ПЗУ инструкции пользователю, программы управления и обработки данных и т. д. — в процессе работы пользователь изменить не может) и запоминающем устройстве с произвольной выборкой информации (ЗУПВ) она может меняться в процессе работы (17 . [c.92]

    На современных хромато-масс-спектрометрах записываемые в ходе всего анализа с интервалами 2—4 с спектры фиксируются во внешней памяти ЭВМ, а их обработка, включающая построение хроматограмм по полному ионному току или любых масс-фрагментограмм, проводится после окончания работы спектрометра. [c.201]

    Б зависимости от спосс получения хроматограмм различают внутренние и внешние хроматограммы. В случае внутренней хроматограммы разделяемые компоненты пробы проходят разное расстояние за одинаковое время. После разделения они все еще находятч на неподвижной фазе и там же детектируются. Этот ввд хроматограмм типичен для плоскостных вариантов, таких, как бумажная или тонкослойная хроматография (разд. 5.3.4). Неподвижная фаза располох на на пластинке, а подвижная движется через неподвижную за счет капиллярных сил или под влиянием гравитации. [c.231]

    Основа количпсщвениого анализа в колоночной хроматографии — определение высоты илн площади пика. В случае внутренних хроматограмм может быть измерена полная интенсивность пятна вещества, например в тонкослойной хроматографии (ТСХ). Хроматографические методы являются методами относительными, т. е. можно сказать, что градуировка проводится путем определения стандартных веществ. При этом можно использовать как внутренние, так и внешние стандарты. [c.244]

    Подвижную фазу, вводимую в слой неподвижной фазы, называют элю-ентом, а подвижную фазу, выходящую из колонки и содержащую разделенные компоненты, — элюатом. В элюате тем или иным способом определяют содержание компонентов. Распределение разделяемых веществ в виде отдельных полос (зон) вдоль колонки представляет собой внутреннюю хроматограмму (рис. 8.2, а). Графическое изображение (часто получаемое с помощью самописца) распределения веществ в элюате называют внешней хроматограммой, или просто хромато1раммой. [c.268]

    Методы расчета хроматограмм. Используя данные по высотам пиков или их площадям, можно рассчитать количественный состав щ)обы методами нормировки (с использованием или без использования поправочных коэффициентов), внешней стандартизации (абсолютной храдуировки), внутренней стандартизации. [c.292]

    Другим фактором, который необходимо учитывать при хроматографировании олигомеров, является их высокая адсорбируемость. Если адсорбционные центры статистически распределены по цепи, то энергия взаимодействия макромолекул с поверхностью сорбента возрастает с ростом ММ, и адсорбция приводит к ухудшению разделения, а в пределе - к разделению по адсорбционному механизму, сопровождающемуся инверсией порядка элюирования. Если же адсорбционные центры сосредоточены на концах макромолекул, то при неизменности энергии адсорбции изменение энергии Гиббса из-за снижения энтропии с уменьшением ММ увеличивается. При этом слабая адсорбция не препятсгвует анализу и, более того, несколько увеличивает селективность в низкомолеьц лярной области. Внешне адсорбционные эффекты проявляются в зависимости формы хроматограмм от полярности растворителя, исключить их удается ггутем гфименения в качестве сорбента органических гелей, а в качестве подвижных фаз -растворителей достаточно высокой полярности. [c.118]

    Б. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя кизельгур Р1 в качестве адсорбента, а для импрегнирования пластинки смесь 10 объемов 2-феноксиэтанола, 5 объемов макрогола 400 Р и 85 объемов ацетона Р. После того как растворитель достигнет вершины пластинки, вынимают пластинку из хроматографической камеры и тотчас используют. В качестве подвижной фазы используют смесь 2 объемов диэтиламина Р и 100 объемов петролейного эфира Р1, насыщенного 2-феноксиэтанолом Р. Наносят отдельно на пластинку по 2 мкл каждого из двух растворов в хлороформе Р, содержащих (А) 2,0 мг испытуемого вещества в 1 мл и (Б) 2,0 мг стандартного образца хлорпромазина гидрохлорида СО в 1 мл. Вынимают пластинку из хроматографической камеры, дают ей высохнуть на воздухе и оценивают хроматограмму в ультрафиолетовом свете (365 нм), наблюдая флуоресценцию, появляющуюся через 2 мин. Опрыскивают пластинку раствором серной кислоты в этаноле ИР и оценивают хромато грамму в дневном свете. Основное пятно, полученное с раствором А, соответствует по положению, внешнему виду и интенсивности пятну, полученному с раствором Б. [c.78]

    Л -Метилпиперазин. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве адсорбента силикагель Р1, а в качестве подвижной фазы смесь 6 объемов этанола ( 750 г/л) ИР, 3 объемов ледяной уксусной кислоты Р и 1 объема воды. Наносят отдельно на пластинку по 5 мкл каждого из двух растворов в метаноле Р, содержащих (А) 50 мг испытуемого вещества в 1 мл и (Б) 0,050 мг Л -метилпиперазина Р в 1 мл. Вынимают пластинку из хроматографической камеры, дают ей высохнуть на воздухе опрыскивают смесью 3 объемов раствора хлорида платины (60 г/л) ИР, 97 объемов воды, 100 объемов раствора йодида калия (60 г/л)ИР и оценивают хроматограмму в дневном свете. Пятно, полученное с раствором Б, должно быть более интенсивным, чем любое пятно, соответствующее по положению и внешнему виду, полученное с раствором А. [c.111]

    Б. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве адсорбента кизельгур Р1 и импрегнируя пластинку смесью 10 объемов фор-мамида Р и 90 объемов ацетона Р путем погружения ее на 5 мм ниже поверхности жидкости. После того как фронт растворителя достигнет высоты не менее 15 см, вынимают пластинку из хроматографической камеры и оставляют стоять по меньшей мере на 5 мин. Используют импрегнированную пластинку в пределах 2 ч с момента приготовления, проводя хроматографирование в том же направлении, что и импрегнирование. В качестве подвижной фазы используют смесь 50 объемов ксилола Р, 50 объемов этилметилкетона Р и 4 объемов формамида Р. Наносят отдельно на пластинку по 3 мкл каждого из двух растворов (А) испытуемого вещества и (Б) стандартного образца дигитоксина СО, приготовленных растворением 50 мг в смеси равных объемов хлороформа Р и метанола Р до получения 10 мл и затем разведением 1 мл до 5 мл метанолом Р. Проводят хроматографирование до прохождения фронта растворителя иа 12 см. Вынимают пластинку из хроматографической камеры, высушивают при П5°С в течение 20 мин, охлаждают, опрыскивают смесью 15 объемов раствора 25 г трихлоруксусной кислоты Р в 100 мл этанола ( — 750 г/л) ИР и 1 объема свежеприготовленного раствора тозилхлорамида натрия Р с концентрацией 30 мг/мл и затем нагревают пластинку при 115°С в течение 5 мин. Дают охладиться и оценивают хроматограмму в дневном свете и в ультрафиолетовом свете (365 нм). Основное пятно, полученное с раствором А, соответствует по положению, внешнему виду и интенсивности пятну, полученному с раствором Б. [c.113]

    Б. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве адсорбента силикагель Р2 и импрегнируя пластинку смесью 5 объемов н-тетрадекана Р и 95 объемов гексана Р путем погружения ее на 5 мм ниже поверхности жидкости. Когда фронт растворителя достигнет вершины пластинки, вынимают пластинку из хроматографической камеры и выдерживают ее при комнатной температуре до полного удаления растворителей. Тотчас используют пластинку, проводя хроматографирование в том же направлении, что и импрегнирование. В качестве подвижной фазы используют смесь 90 объемов метанола Р и 10 объемов воды. Наносят отдельно на пластинку по 1 мкл каждого из двух растворов в этаноле ( 750 г/л) ИР, содержащих (А) 20 мг испытуемого вещества в 1 мл и (Б) 20 мг стандартного образца флуфеназина деканоата СО в 1 мл. Вынимают пластинку из хроматографической камеры, дают ей высохнуть на воздухе и оценивают хроматограмму в ультрафиолетовом свете (254 нм). Основное пятно, полученное с раствором А, соответствует по положению, внешнему виду и интенсивности пятну, полученному с раствором Б. [c.138]


Смотреть страницы где упоминается термин Хроматограмма внешняя: [c.365]    [c.139]    [c.364]    [c.147]    [c.91]    [c.243]    [c.270]    [c.25]    [c.161]   
Аналитическая химия Том 2 (2004) -- [ c.231 ]

Руководство по аналитической химии (1975) -- [ c.345 , c.352 ]




ПОИСК





Смотрите так же термины и статьи:

Хроматограмма

Хроматограмма внешняя внутренняя

Хроматограмма внешняя качественная оценка

Хроматограмма внешняя количественная оценка



© 2025 chem21.info Реклама на сайте