Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коленчатые валы клапаны

    Рождению в 50-е годы и бурному развитию производства ингибированных нефтяных составов содействовало прежде всего автомобилестроение. В настоящее время проблема защиты от коррозии автомобилей значительно возросла, что связано с количественным и качественным изменениями автомобильного парка [142]. Если в начале века насчитывалось 6200 автомобилей, то в настоящее время их численность превышает 300 млн. В качественном отношении ущерб от коррозионных поражений и коррозионно-механического износа также значительно возрос. Применительно к двигателям внутреннего сгорания это связано с повышением удельной мощности двигателя, уменьшениями допусков при их изготовлении, переходом на У-образные двигатели с использованием гидравлических толкателей, подверженных интенсивной электрохимической коррозии, принудительной вентиляцией картера, усилением коррозионной составляющей в общем износе гильз цилиндров, поршневых колец, подшипников коленчатого вала, клапанов, пружин и других деталей [9—12]. Кузов, крылья, днища автомобилей изготавливаются из более тонкого листа, используются облегченные, самонесущие кузова, имеющие в качестве ребер жесткости многочисленные скрытые сечения [141, 142]. В настоящее время на изготовление кузовов идет стальной лист толщиной 0,5—0,9 мм, что в два раза тоньше листов, используемых в 50-е годы. При соединении листов, в том числе точечной сваркой, образуются перекрытия, зазоры и профили, крайне уязвимые для многих видов коррозии. Достаточно сказать, что распределение объема трудовых затрат на весь срок службы автомобилей, распределяется следующим образом изготовление- новых автомобилей — 1,4%, техническое обслуживание—45,4%, текущий ремонт —46% и капитальный ремонт — 7,2%. [c.193]


    Сборка узлов (шатунов, поршней, коленчатых валов, клапанов, масляных насосов и др.), контроль качества и испытания узлов (на производительность, герметичность и т. п.). [c.254]

    Компрессор выполнен горизонтальным, одноступенчатым, двух-али четырехцилиндровым двойного действия привод от синхрон- ного взрывозащищенного электродвигателя в продуваемом исполнении, ротор которого насажен на вал. Один конец вала электродвигателя опирается на выносной подшипник, а другой соединяется с коленчатым валом компрессора при помощи жесткой муфты. Буферные емкости всасывания крепят сверху к патрубкам цилиндров двух параллельных рядов буферные емкости нагнетания располагаются под цилиндрами компрессора. Регулирование производительности компрессора ручное и осуществляется отжимом пластин всасывающих клапанов задних цилиндров. Компрессор имеет систему автоматического контроля и защиты, позволяющую дистанционно управлять пуском и остановкой компрессора. В дополнение к обычным системам смазки компрессор оборудован системой [c.117]

    Шестеренчатый масляный насос, лубрикатор и центробежный регулятор приводятся в действие от коленчатого вала. С помощьк> шестеренчатого насоса осуществляется смазка деталей механизма движения агрегата. Лубрикатор подает моторное масло в силовые цилиндры и компрессорное масло в компрессорные цилиндры. Центробежный регулятор при изменении числа оборотов больше или меньше открывает топливный клапан и тем самым обеспечивает качественную регулировку двигателя. [c.249]

    При капитальном ремонте полностью разбирают компрессор, насос и их привод, выполняют все работы, положенные при текуш,ем и среднем ремонте этих машин. Капитальный ремонт является восстановительным ремонтом машины, он связан с демонтажем отдельных ее узлов. При капитальном ремонте выполняют следующие основные работы тщательно проверяют с помощью лупы коленчатый вал, тела крейцкопфов и ползунов и при наличии значительных трещин эти детали заменяют устраняют обнаруженные овальность или конусность шеек коленчатого вала и пальца кривошипа растачивают цилиндры или втулки, изготовляют и подгоняют к ним поршни заменяют уплотнения сальников и лабиринтов ремонтируют и испытывают на плотность клапаны, запорную арматуру проверяют и ремонтируют предохранительные клапаны заменяют забракованные шатунные болты и шпильки коренных подшипников осматривают, чистят и проверяют промежуточные холодильники и внутренние поверхности цилиндров проверяют состояние маслопроводов, масляных насосов и обратных клапанов и заменяют непригодные детали очищают газопроводы и жидкостные трубопроводы проверяют фундаменты, рамы, крепления их на фундаменте. После очистки и ремонта все детали насоса и компрессора, работающие под давлением, подвергают внутреннему осмотру и гидравлическому испытанию. [c.310]


    Во избежание засоления проточной части установки солями жесткости применяли дистиллированную воду. Привод коленчатого вала установки осуществляется электродвигателем 24. Детали цилиндро-поршневой группы и приводного механизмов клапанов смазываются посредством разбрызгивания за счет периодического погружения прилива 23 крышки нижней головки шатуна в масляную ванну. [c.303]

    Таким образом, калильное зажигание нарушает нормальное протекание процесса сгорания, делает его неуправляемым, приводит к снижению мощности и ухудшению экономичности двигателя. Интенсивное калильное зажигание вызывает прогорание и механическое разрушение поршней, залегание поршневых колец, обгорание кромок поршней и клапанов, разруше- кп. ние подшипников, обрыв шатунов и поломку коленчатых валов. В последнее время зарубежные специалисты расценивают борьбу с преждевременным воспламенением в двигателях с высокой степенью сжатия как проблему более важную, чем борьба с детонацией. [c.74]

    Микрометрический обмер остальных деталей двигателя показал, что износ поршневых колец и канавок, бобышек, поршней, верхних головок шатуна, шатунных шеек коленчатого вала, толкателей и стержней клапанов незначителен и находится в пределах точности измерений. Величины зазоров в сопряженных деталях после испытаний находятся в пределах, оговоренных чертежами для новых двигателей. Таким образом, установлено, что износы деталей двигателей при пуске с помощью пусковой жидкости Арктика весьма невелики, составляют небольшую часть общих эксплуатационных износов и практически мало отличаются от износов, полученных при пуске с помощью подогревателя. [c.327]

    О влиянии механических примесей на работу системы питания карбюраторных двигателей собран большой материал и выяснены основные закономерности [10—17]. Установлено, что механические примеси, попадая в карбюратор, вызывают засорение каналов и жиклеров. Если загрязнения прилипают к рабочей фаске клапана поплавкового механизма или его седла, клапан перестает поддерживать необходимый уровень бензина в поплавковой камере. Попадание загрязнений под шарик обратного клапана насоса ускорения нарушает герметичность клапана, вследствие чего часть бензина в момент действия насоса возвращается в поплавковую камеру. Это приводит к ухудшению приемистости двигателя, к появлению провалов при увеличении числа оборотов коленчатого вала двигателя. [c.340]

    При последующей разборке компрессора снимаются крышки цилиндров, нагнетательные клапаны с буферными пружинами, демонтируются клапанные доски, открываются боковые крышки картера и проворачивается коленчатый вал так, чтобы поршни оказались в верхнем положении, удобном для снятия всасывающих клапанов. После этого разбирается и извлекается шатунный подшипник и при помощи рым-болтов вынимается поршень с шатуном, при помощи съемника снимается маховик, а затем открывается крышка сальника. Далее разбираются сальник, всасывающие и нагнетательные вентили. При разборке проводится дефектация деталей. [c.223]

    Это явление названо поверхностным воспламенением, или калильным зажиганием. Оно сопровождается падением мощности двигателя из-за затраты работы на сжатие продуктов сгорания. Однако главная опасность поверхностного воспламенения связана с увеличением теплоотдачи стенкам, так как возрастает время нахождения в цилиндрах сгоревших газов с высокой температурой. Интенсивное неуправляемое воспламенение может привести к прогоранию и механическому разрушению поршней, залеганию поршневых колец, обгоранию кромок поршней и клапанов, разрушению подшипников, обрыву шатунов и даже поломке коленчатых валов. В последние годы борьбу с поверхностным воспламенением в двигателях с высокой степенью сжатия считают более важной, чем борьба с детонацией. [c.45]

    На автомобиле Оа зип В-210 с двигателем рабочим объемом 1,4 л и е = 9,5 [171] криогенный бак массой 120 кг вместимостью 230 л размещается в багажнике. Водород под давлением 0,4—0,5 МПа подается во впускной патрубок с помощью клапанного механизма, приводимого в действие дополнительным кулачковым валом (рис. 4.23). Клапан впрыска водорода открывается одновременно с впускным клапаном двигателя и закрывается через 90° поворота коленчатого вала. Д т я изменения расхода водорода установлен двухступенчатый редуктор с двумя игольчатыми клапанами. Проходное сечение [c.176]

    Начальные давление ри и температуру газа перед всасывающим отверстием (патрубком) и конечные после нагнетательного патрубка р и Т считаем постоянными в течение всего цикла компрессора. При движении поршня от клапанной плиты к коленчатому валу объем камеры А увеличивается, и давление газа в ней снижается. Под разностью давления газа перед всасывающим патрубком р и в цилиндре Рц откроются линии всасывания и газ поступит в цилиндр, заполняя его увеличивающийся объем. Этот процесс называется всасыванием. [c.6]

    Увеличение объема цилиндра происходит до достижения поршнем нижней мертвой точки, т. е. наибольшего приближения к коленчатому валу. В этот момент еще рц меньше р , клапаны линии всасывания открыты и газ продолжает поступать в цилиндр. Перемена направления движения поршня вызовет уменьшение объема цилиндра и повышение давления в нем как за счет уменьшения объема, так и поступления свежего газа. В момент сравнивания величин давления в цилиндре и полости всасывания клапаны линий всасывания закроются, камера А станет замкнутой. Процесс всасывания при самодействующих клапанах в ступени заканчивается уже при обратном ходе поршня. [c.6]


    Поступление газа из полости всасывания в цилиндр, снабженный клапанами, начинается, как только давление газа в цилиндре Рц станет меньше, чем / . в- Если ступень снабжена управляемым от коленчатого вала золотниковым механизмом, то открытие окон всасывания произойдет при заданном угле поворота вала. Движение газа в проточной части клапанов или окнах всасывания происходит также с переменными скоростями, вызванными переменной скоростью поршня. Разность между давлением в полости всасывания и давлением в цилиндре составит [c.28]

    Рассчитывая рабочий процесс в ступени с помощью математической модели для получения индикаторной и температурной диаграмм, с достаточной точностью для практических целен шаг расчета можно максимально увеличить до 2 поворота коленчатого вала. Чем больше шаг, те.м меньше время счета. При расчете динамики пластин самодействующих клапанов для получения достоверных результатов требуется уменьшить шаг расчета. Для прямоточных клапанов достоверные данные можно получить при шаге 0,25—0,2 . При расчете динамики более массивных пластин кольцевых и полосовых клапанов шаг расчета можно увеличить до Г, хотя вследствие этого диаграмма движения пластины получится сглаженной, время—сечение щели клапана будет определено с ошибкой. На участке открытия клапанов шаг расчета автоматически снижается до требуемой величины. [c.70]

    На сменки цилиндра масло вспрыскивается из отверстия 21 в нижней головке шатуна при совпадении этого отверстия с каналом в шатунной шейке коленчатого вала. Поршневой палец 8 смазывается маслом, снимаемым со стенок цилиндра маслосъемным кольцом и направляемым во внутренние полости бобышек поршня и верхней головки шатуна, ДлЯ смазки деталей клапанного механизма масло подается по каналу 9 из средней шейки распределительного вала. Из канала 9 масло попадает через паз в стойке 19 коромысла 20, через зазор между отверстием, в стойке к втулкам коромысел. От втулок коромысел масло через канал, выполненный в коротком плече коромысла, подается. По каналам 11 и сверлениям в передней шейке распре делительного вала для смазки [c.144]

    Поршневые ДВС состоят (рис.4.1) из камеры сгорания 1, азораспределительных клапанов (впускных и выпускных) 2 и кри — 1ЮШИПНО — шатунного механизма цилиндра 3, поршня 4, шатуна 5, коленчатого вала 6, картера 7, маховика и т.д. Для обеспечения рабочего цикла ДВС имеют системы питания, зажигания, смазки и охлаждения. [c.100]

    Предположим, что поршень 3 двигателя находится в верхнем мертвом положении и при вращении вала 5 двигается вниз. При этом в цилиндре 2 создается разрежение, газораспределительный механизм открывает впускной клапан 6, и цилиндр заполняется воздухом. Этот такт называется всасыванием (рис. 35, а). К моменту достижения поршнем нижнего крайнего положения прекращается всасывание воздуха и газораспределительный механизм закрывает впускной клапан. При движении поршня вверх клапаны впускной 6 и выхлопной 1 закрыты, происходит сжатие воздуха в иплиндре. Этот такт называется тактом сжатия (рис. 35, б). В конце такта сжатия, когда давление воздуха достигает 40 ат, а его температура повышается до 600° С, через форсунку 7 впрыскивается мелкораспыленное топливо. Попадая в среду сильно разогретого воздуха, топливо быстро воспламеняется и сгорает (рис. 35, в). При этом в цилиндре значительно повышается давление и температура. Под действием этого давления поршень опускается вниз и через шатун 4 передает движение коленчатому валу 5. Этот такт называется рабочим ходом. При обратном ходе поршня газораспределительный механизм открывает выхлопной кланан [c.78]

    Насосы четверного действия состоят из двух насосов двойного действия, имеющих общую всасывающую и нагнетательную трубы, а также общий коленчатый вал. Кривошипы коленчатого вала смещены на угол 90° друг к другу. Прн таком расположении кривошипов, когда поршень одного цилиндра занимает крайнее положение, поршень во втором цилиндре находится носрелнне. Первый цилиндр в этот момент не всасывает и не нагнетает, а второй цилиндр одной стороной всасывает, а другой нагнетает жидкость. Такой момент зафиксирован на рис. 45, на котором изображена схема горизонтального насоса четверного действии сдискоьы-ми поршнями. В цилиндре Б не происходит процессов всасывания и нагнетания в цилиндре А через клапан / жидкость всасывается, а через клапан 3 нагнетается. При дальнейшем вращении коленча- 4 [c.94]

    Регулируют мощность и число оборотов газовых компрессоров по так называемой качественной системе, при которой количество воз-ду 4а, поступающего в силовой цилиндр, остается неизменным, ре-ryJшpyeт я только количество газа. Для та"кого регулирования на двтгателях обычно установлены центробежные регуляторы. При увеличении числа оборотов коленчатого вала грузы регулятора расходятся, растягивая пружину и через систему рычагов прикрывают газовый клапан. При этом уменьшается поступление в цилиндр газа, мощность двигателя падает, и число оборотов компрессора снижается. При уменьшении числа оборотов грузы сходятся этому способствует растянутая пружина, преодолевающая центробежную силу грузов. Система рычагов при этом увеличивает степень открытия газового клапана, в цилиндры начинает поступать газа больше, мощность двигателя возрастает, и число оборотов компрессора увеличивается. [c.246]

    Мотокомпрессоры имеют от одного до восьми цилиндров двигателя. На рис. 134 изображен газомоторный компрессор, у которого четырехтактные силовые цилиндры 9 расположены У-образно, а компрессорные цилиндры 10 двойного действия — горизонтально. Шатуны 4 силовых цилиндров при помощи пальцев 3 непосредственно соединены с шатунами компрессорных цилиндров 10, благодаря чему достигается компактность агрегата. Клапаны 7 находятся вне цилиндров, в специальных клапанных полостях. В головке цилиндра расположены пусковой клапан 5 и запальная свеча 6. Коленчатый вал 1 агрегата уложен в станине 2. Распределительный валик 8, скорость вращения которого в два раза меньше ско- [c.246]

    Основой агрегата является станина 20, к которой прикреплены рама 18 с направляющими для крейцкопфа и блок цилиндров 23. В станине на четырех коренных подц1ипниках 19 уложен коленчатый вал 21 с маховиком, имеющий столько же колен, сколько силовых или компрессорных цилиндров у агрегата. Шатун 22 соединен с поршнем 4 силового цилиндра, а шатун 6 через крейцкопф 7 И шток II с поршнем 12 компрессорного цилиндра 14. Другими головками оба шатуна соединяются с коленчатым валом, причем на одном колене. Топливный клапан I открывается и закрывается в определенное время с помощью эксцентриков, закрепленных на ко- [c.248]

    В процессе испытания масло в двигатель не доливают. По окончании испытания двигатель охлаждают при комнатной температуре 10 ч. Зате.м его разбирают и оценивают состояние толкателей, кулачков, стержней клапанов, шатунов, гильз цилиндра, шеек коленчатого вала и др. Суммарная оценка ржавления не должна быть менее 9,0 баллов (полное остутствие ржавления — 10 баллов). [c.138]

    Состояние трущихся поверхностей (поршневых колец, поршня, гильзы цилиндра, коленчатого вала и шатунного подшипника) определяют визуально по наличию задиров, натиров, наволакивания металлов, рисок и царапин. Характер и толщина отложений иа днище и боковой поверхности головки поршня, на клапанах, надпоршневой поверхности головки цилиндра, нерабочей поверхности гильзы цилиндра, вставке камеры сгорания и в поддоне картера, а также площадь покрытия ими этих поверхностей вносят в акт экспертизы. Эти показатели носят контрольный характер и не включаются в классификационную оценку испытуемого масла. [c.59]

    Под давлением смазываются шатунный подшипник коленчатого вала, подшипники распределительного вала и втулки коромысел клапанов. Все остальные трущиеся поверхности смазываются посредством разбрызгивания. Масло очнща ется цеттробежным маслоочистителем. [c.105]

    Стуки поршня появляются при значительном его износе, а также при износе цилиндра (0,3—0,4 мм) в период работы недостаточно прогретого двигателя с малой частотой вращения вала на холостом ходу. Эти стуки прослушиваются в верхней части блока цилиндров со стороны, противоположной распредрлительному валу. Наиболее часто стук поршня слышен в момент перехода его через "мертвую" точку. Характер стука — сухой, щелкающий, уменьшающийся по мере прогрева двигателя. Стуки клапанов возникают при увеличенных тепловых зазорах между стержнями клапанов и носком коромысла (толкателя). Эти отчетливые звонкие стуки хорошо прослушиваются на прогретом двигателе при малой частоте вращения коленчатого вала. Причины шумной работы двигателя — износ и нарушение регулировки шестеренчатого и цепного приводов газораспределительного механизма. Этот шум не прекращается на всех режимах работы двигателя. [c.166]

    Порошки ПГ-12И-01, ПГ-12Н-02, ПГ-01Н-01 приготовлены на никелевой основе системы Ni- г-B-Si- -Te. Твердость регулируется содержанием С, В, Сг. Напыленные соединения имеют низкий коэффициент трения, высокую допустимую рабочую температуру (до 800 °С). Их применяют для напыления и напьшения с оплавлением при восстановлении деталей типа "вал", поршневых насосов, фасок клапанов, шеек коленчатых валов-из углеродистых, коррозионно-стойких сталей, чугуна. При твердости до НКС 40 покрытия обрабатывают резанием, свыше НКС 40 - шлифованием. [c.63]

    После достижения НМТ поршень по инерции движется к ВМТ. При этом открывается выпускной клапан, и продукты сгорания топлива удаляются из камеры сгорания. Затем цикл работы двигателя повторяется. Таким образом, рабочий цикл такого двигателя состоит из четырех тактов всасывания, сжатия, раоли-рения продуктов сгорания и выхлопа. Один цикл совершается за два оборота коленчатого вала. [c.140]

    При капитальном ремонте (К) выполняются все работы, относящиеся к текущему и среднему ремонтам, а также разборка подшипников скольжения, их перезаливка и подгонка снятие маховика с разборкой и съемом коленчатого вала расточка цилиндров или цилиндровых втулок проверка поршневых ( фейцкопфных) пальцев на эллипсность и конусность и их ремонт разъединение шатунов и поршней, ремонт и замена под-1ГНПННК0В и втулок пригонка всех подшипников и при необходимости—их перезаливка проверка прямолинейности п диаметра щтока (при необходимости — ремонт или смена штока) проверка правильности положения шатуна по отношению к валу и к поршню и устранение обнаруженных перекосов проверка состояния поршня (при необходимости — ремонт или замена) снятие, очистка и замена сработавшихся поршневых колец проверка канавок и пригонка новых поршневых колец проверка состояния и промывка маслопроводов, масленок и масляных насосов с заменой негодных частей проточка и шлифовка коренных и кривошипных шеек коленчатого вала очистка от накипи II грязи всех охлаждающих поверхностей осмотр и проверка холодильников с заменой негодных трубок и змеевиков проверка, ремонт и испытание на плотность всей запорной арматуры проверка крепления рамы (картера) н состояния фундаментных болтов очистка от грязи, масла и нагара трубопроводов нагнетания от компрессора до воздухосборника проверка и ремонт всех предохранительных клапанов и регуляторов давления. [c.300]

    За один оборот коленчатого вала при теоретическом процессе всасывается объем газа, равный произведению площади поршня Р на максимальный ход поршня 5шах. Так как клапан и уплотнения поршня абсолютно герметичны, то это количество газа будет подано потребителю. [c.23]

    Процесс всасывания при постоянном давлении Ра должен завершаться при максимальном объеме рабочей камеры, т. е. в точке 1. Для компрессора простого действия с тронковым поршнем это будет НМТ. Ей соответствует угол поворота коленчатого вала на 180°. При таком положении вала должно произойти отсоединение рабочей камеры от камеры всасывания (это может быть сделано принудительно с помощью механизма, кинематически связанного с валом компрессора). При дальнейшем увеличении угла поворота <р объем рабочей камеры будет уменьшаться, а давление в ней расти до конечного давления / . Конкретное значение ф в нашем случае будет зависеть от показателя политропы сжатия, относительного мертвого пространства и отношения давления р /рн- В этот момент следует соединить рабочую камеру с камерой нагнетания, что и должен обеспечить механизм принудительного газораспределения. Процесс нагнетания газа будет длиться пока поршень не достигнет крайнего левого положения (ВМТ). Ему соответствует угол поворота фз = 0°, при котором должен закрыться нагнетательный клапан. В дальнейшем будет происходить расширение газа из мертвого пространства, давление в рабочей камере будет падать и при некотором угле поворота ф окажется равным начальному давлению р . Конкретное значение [c.191]

    Экспериментальные исследования такого уплотнения поршня показали, что потери на преодоление трения в лабиринтном режиме сокращаются в шесть—десять раз. При этом также происходит снижение температуры поверхности цилиндров, увеличение утечек незначительно. Так, температура стенки цилиндра вблизи клапанной плиты в ступени с тронковым поршнем при режиме работы = 10 МПа, П == 3 и давлении за уплотнением 0,1 МПа при частоте вращения коленчатого вала п = 13,35 с упала больше, чем на 40 К при переходе режима работы уплотнения с контактного на лабиринтный. При увеличении частоты вращения вала с п 6,66 до 13,35 с -, т. е. вдвое, относительная величина внешних утечек уменьшалась в 2,2 раза и составляла 3,25 %, но была примерно на 1,0 % больше, чем у уплотнения с контактными поршневыми кольцами. При большем возрастании частоты вращения вала и с увеличением продолжительности работы уплотнений преимущества уплотнений с кольцами, работающими в лабиринтном режиме, значительно увеличиваются сравнительно с уплотнениями, имеющими кольца контактного типа. Быстрый износ контактного типа колец приводит к увеличению зазоров в замках колец и к соответствующему увеличению протечек через уплотнение. [c.233]

    В лубрикаторе клапанного типа (рис. VIII.3, б) насосные элементы расположены в ряд и получают движение от общего горизонтального коленчатого вала. Каждый насосный элемент имеет два плунжера. Плун жер 2 подает масло в каплеуказатель /, причем ход его регулируется выве денной наружу регулировочной головкой 3 с выдвижным стержнем 4 Другой плунжер 5 осуществляет подачу из каплеуказателя в цилиндр Контролируя подачу, учитывают, что масса 13—16 капель масла равна 1 г [c.459]

    Для крупных компрессоров мощностью более 1000 квт вместо сепараторов реактивного действия целесообразно применять приводные — с индивидуальным электродвигателем. Такие сепараторы обеспечивают более тщательную очистку масла, так как частота вращения их ротора не зависит от давления и вязкости (или температуры) масла в системе. Отечественные заводы выпускают приводные центробежные сепараторы различной производительности и со встроенным взрывонепроницаемым электродвигателем. В конструкции сепараторов предусмотрено два шестеренчатых насоса — на всасывании и сливе. Они выбраны таким образом, что сепарация масла происходит при атмосферном давлении с одновременным отделением шлама и воды. Насос на сливе развивает давление до 0,35 Мн1м , благодаря чему приводной сепаратор может служить в системе в качестве пускового масляного насоса, который необходим, если основной насос приводится в движение от коленчатого вала. Но в этом случае масло после сепаратора поступает не в маслосборник, а через обратный клапан к механизму движения компрессора. [c.468]


Смотреть страницы где упоминается термин Коленчатые валы клапаны: [c.80]    [c.81]    [c.186]    [c.245]    [c.248]    [c.249]    [c.222]    [c.87]    [c.213]    [c.140]    [c.140]    [c.224]    [c.378]    [c.327]   
Кислород и его получение (1951) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Валии

Валим

Клапан



© 2024 chem21.info Реклама на сайте