Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод двуокись см плавления

    В первую очередь будет выделяться главным образом гелий, кипящий при температуре —269° С, затем в газообразное состояние перейдет водород, температура кипения которого равна —252,7° С, за ним неон (—246° С), затем азот (—195,8° С). Вслед за азотом, когда температура поднимется на 10° С, закипит аргон. Кислород пока останется в жидком состоянии, так как его температура кипения равна —183° С. После выделения кислорода при температуре —153° С начнет выделяться криптон и последним при —108° С закипит ксенон. На дне сосуда останется небольшое количество белого снегообразного вещества. Это затвердевшая двуокись углерода, температура плавления которой —97,6° С, а температура возгонки —78,5 С. [c.254]


    Газифицируемое топливо подают в газогенератор периодически сверху через загрузочную коробку 8 при опущенном конусе затвора 9 и закрытой крышке коробки. В процессе работы газогенератора топливо в шахте постепенно опускается вниз. Получаемая при газификации зола гасится водой в чаше 3, откуда зола и частично образовавшийся шлак удаляются из газогенератора. В газогенераторе различают зону шлака и золы 4, зону газификации 5, зону сухой перегонки 6 и зону сушки 7. В газогенераторе топливо и воздух движутся противотоком. Воздух, подаваемый через колосниковую решетку, в зоне 4 нагревается, охлаждая шлак и золу, затем в зоне газификации 5 кислород воздуха образует с углеродом двуокись углерода СОа, которая взаимодействует с углеродом, образуя окись углерода. Из зоны газификации 5 горячие газы поступают в зону 6, где они нагревают топливо, при этом происходит сухая его перегонка, т. е. удаление из него летучих продуктов. В зоне 7 идет подсушка топлива. Генераторный газ выходит через отверстие, расположенное вверху стенки шахты. Чтобы температура в зоне газификации была 1000—1100°, т. е. ниже температуры плавления золы, в газогенератор подают вместе с воздухом небольшое количество водяного пара, кроме того, в шахту поступает водяной пар, полученный в чаше 3 при гашении золы и шлака. Поэтому при подаче пара для снижения температуры фактически получают паровоздушный генераторный газ. [c.191]

    Введение. Агрегатные состояния веществ. В большинстве случаев каждое вещество может, в зависимости от внешних условий (температуры и давления), находиться в газообразном, жидком и твердом состояниях, т. е. в том или ином агрегатном состоянии. Однако для некоторых веществ не все три агрегатных состояния достижимы. Так, карбонат кальция при легко доступных давлениях практически не удается получить ни в жидком, ни в газообразном состояниях, так как он разлагается при нагревании на окись кальция и двуокись углерода раньше, чем наступит его плавление или испарение, а окись кальция практически нелетуча. С другой стороны, возможны такие условия, при которых данное вещество может находиться одновременно в двух или даже в трех состояниях. Так, вода при 0,010°С и давлении мм рт. ст. находится в устойчивом равновесии в трех состояниях — льда, жидкой воды и водяного пара. [c.91]

    Карбамид (ЫН2)2СО представляет собой белое кристалличе-ское вещество, гигроскопичное, легко растворимое в воде и низших спиртах, с температурой плавления 132,5°С. При нагреваиии с водой в щелочной среде карбамид разлагается на двуокись углерода и аммиак. Карбамид обладает способностью к образованию кристаллических комплексов с алканами нормального строения, у которых число атомов углерода в молекуле не менее шести (см. 11). Углеводороды гибридного строения, имеющие в составе молекулы длинные неразветвленные алифатические радикалы, также образуют карбамидные комплексы. Способность углеводородов к комплексообразованию и прочность полученного комплекса повышаются с увеличением длины неразветвленной цепи алифатического углеводорода. Образование комплекса сопровождается выделением теплоты, количество которой возрастает с увеличением молекулярной массы углеводородов, [c.311]


    При повышении давления примерно до 60 атм СОг превращается в жидкость, которую хранят в стальных баллонах. При быстром испарении жидкой двуокиси углерода вследствие поглощения теплоты образуется снегообразная масса твердой СО2. При температуре выше —78,5° С и атмосферном давлении твердая двуокись углерода сублимируется, т. е. переходит в газообразное состояние без плавления. [c.90]

    Карбонаты двухвалентных металлов разлагаются на окись металла и двуокись углерода ниже температуры плавления этих соединений. [c.92]

    В зависимости от температуры и давления большинство веш,еств может находиться в газообразном, жидком или твердом состояниях, называемых агрегатными состояниями веш,ества . Для некоторых веш,еств не все три состояния при нормальном атмосферном давлении могут быть реализованы. Так, например, нафталин, иод, мышьяк при нагревании под атмосферным давлением переходят непосредственно в пар. Карбонат кальция практически не удается получить ни в жидком, ни в газообразном состояниях, так как он разлагается при нагревании на окись кальция и двуокись углерода раньше, чем наступает его плавление или испарение. Наряду с этим возможны и такие условия, при которых данное вещество может находиться одновременно в двух или трех агрегатных состояниях. Например, вода при 0,0075° С и давлении 4,579 мм рт. ст. (6,14-10 н/м ) находится в устойчивом равновесии в трех состояниях льда, жидкой воды и водяного пара. [c.33]

    Слабое взаимное притяжение частиц в неполярных кристаллах обусловливает их малую твердость, а также низкие температуры плавления и кипения. Подобные вещества большей частью легко летучи. Так, твердая двуокись углерода СО.2 при комнатной те.мпе- [c.116]

    Диоксид, обычно называемый двуокисью угле рода, СО2 образуется при полном сгорании свободного углерода в атмосфере кислорода. Он представляет собой бесцветный газ, в связи с чем и носит тривиальное название углекислый газ . Теплота образования двуокиси углерода из графита составляет 393,7 кдж г-моль. Плотность двуокиси углерода при н.у. 1,977 г/л (по воздуху 1,53). Двуокись углерода легко сжижается ее критическая температура 31,3° С, критическое давление 72,9 атм.. При сильном охлаждении она превращается в белую снегообразную массу (сухой лед), которая при нормальном давлении возгоняется (не плавясь) при —78,5 С. При давлении 5 атм твердая двуокись углерода плавится при —56,7 С. Теплота плавления двуокиси углерода 51 дж г, теплота испарения (при —56 С) 569 5ж/г. Жидкая двуокись углерода не проводит электрического тока. Кристаллическая решетка — молекулярного типа. [c.196]

    Так, оказалось, что в отличие от минеральных органические вещества весьма своеобразно ведут себя при нагревании. Температуры плавления твердых органических веществ не превышают 350—400°С многие из них плавятся ниже 200—100°С. При нагревании без доступа воздуха уже при сравнительно низких температурах (порядка 400—600°С и даже ниже) органические вещества разлагаются и обугливаются, а в присутствии кислорода в подавляющем большинстве сгорают. При этом среди продуктов горения всегда имеется двуокись углерода (СО2) таким образом, было установлено, что все органические вещества содержат углерод. [c.10]

    Для конденсации газов в процессе их очистки методами фракционированной дистилляции и ректификации, а также для хранения газов и для вспомогательных физико-химических исследований (определение степени чистоты газов по температуре кипения и плавления, плотности в сжиженной состоянии и т. п.) требуется применение низких температур. Для получения низких температур в лаборатории обычно используют жидкие газы, твердую двуокись углерода (сухой лед) и смеси льда с различными солями. [c.58]

    При более высоких температурах графит разрушается главным образом вследствие окисления. Щелочи и соли начинают окислять графит при температурах их плавления. Газообразный кислород в значительной степени реагирует с ним при температуре 500° С, водяной пар и двуокись углерода — около 800°С фтор реагирует выше 400° С азот, хлор и сера практически не реагируют. [c.43]

    Двуокись углерода — газ без цвета и запаха, слабо кислый на вкус благодаря образованию некоторого количества угольной кислоты при растворении в воде. Она примерно на 50% тяжелее воздуха. Хорошо растворима в воде при давлении 1 атм и 0°С в 1 л воды растворяется 1713 мл СОг. Ее температура плавления (затвердевания) лежит выше температуры сублимации кристаллической формы при давлении 1 атм. Если кристаллическую двуокись углерода нагревать от очень низких температур, то давление паров достигает 1 атм при —79 °С, и при этой температуре она испаряется (сублимируется) без плавления. Если же давление увеличить до 5,2 атм, то кристаллическое вещество плавится в жидкость при температуре —56,6°С. Следовательно, при обычном давлении двуокись углерода из твердого состояния переходит непосредственно в газообразное. Благодаря этому свойству твердую двуокись углерода (сухой лед) широко применяют в качестве хладагента. [c.233]


    Легкость, с которой хинолиновая кислота теряет двуокись углерода, резко отличается от устойчивости фталевой кислоты, которая при нагревании до температуры, превышающей ее температуру плавления (184°), не декарбоксилируется и с потерей молекулы воды превращается в ангидрид. [c.440]

    Кумариновые кислоты при плавлении образуют кумарины, в то время как кумаровые кислоты в этих условиях отщепляют двуокись углерода и дают стиролы. Замыкание цикла кумариновых к отчасти кумаровых кислот в кумарины можно также проводить с помощью соляной кислоты. Указанной реакции благоприятствует наличие алкильных групп как в бензольном, так и в пироновом циклах, и в некоторых случаях этот процесс протекает даже в растворе соды [74, 218, 222]. [c.159]

    В настоящее время исследования хемосорбции обычно проводятся на сконденсированных пленках, так как их поверхность настолько велика, что адсорбцию можно измерять с большой степенью точности. К тому л<е при изучении хемосорбции металлов с низкой температурой плавления можно использовать пленки, а не нити накала. В результате этих исследований было установлено, что хемосорбция таких газов, как водород, азот, окись и двуокись углерода и этилена, быстро протекает на многих металлах (но не на всех). Например, хемосорбция водорода на марганце и окиси углерода на алюминии при комнатной температуре протекает медленно, а при взаимодействии окиси углерода (или этилена) с цинком [67] при комнатной температуре хемосорбция не была обнаружена. [c.287]

    Самым подходящим сырьем для окисления является смесь нормальных парафиновых углеводородов Сх8—Сзе, выделяемая из маслянной фракции с пределами выкипания 320—485° С в виде кристаллической массы и имеющая температуру плавления от 45 до 60° С. Эта смесь должна содержать как можно меньше изопарафиновых углеводородов, которые при разрыве цепей третичных и четвертичных углеродных атомов образуют в большом количестве низшие кислородсодержащие соединения (Сх—Со) и двуокись углерода. В смеси не должно быть также ароматических углеводородов, которые образуют соединения, склонные к образованию гудрона при конденсации и сополимеризации [64]. [c.111]

    Углерода двуокись Оа, НаО, Накаленные (650—700° С) медные стружки плавленый СаСк Н2504 [c.171]

    В первую очередь должен выделиться газ, имеющий наиболее низкую температуру кипения,— гелий, он кипит при тбдМ пературе —269°, затем в газообразное состояние перейдет водород, температура кипения которого равна —252,7°, за ним испарится неон, кипящий при температуре—246,3°. После них начнет выделяться азот, кипящий при температуре—195,8°. Вслед за ним, когда температура поднимется на 10°, закипит аргон. Кислород пока останется в жидком состоянии, так как его температура кипения равна—183°. После того как кислород перейдет в газообразное состояние, при температуре—156,6° начнет выделяться крипто , я последним, при температуре —111,8° испарится ксенон. На дне сосуда останется небольшое количество белого снегообразного вещества. Это затвердевшая двуокись углерода, температура плавления которой —97,6°, а температура кипения —78,5°. [c.21]

    Метан (СН4) — бесцветный газ, без запаха н вкуса. Молекулярная масса 16,04, плотность 0,72 кг/м при 0°С и 760 мм рт. ст. Температура кипения минус 161,58°С, температура плавления минус 182,49°С, плотность по воздуху 0,5543, в воде не растворим. Метан не ядовит. При высоких концентрациях оказывает наркотическое действие и может вызвать удушье. В процессе переработки природного и коксового газов получаются полутные газы — окись и двуокись углерода, которые входят в состав азотоводородной смеси. [c.22]

    Получение. В колбу (см. ри,с. 2,а, стр. 13) наливают 30%-ный раствор сульфата, меди, а в капельную воронку насыщенный раствор цианида алия. Включив вакуум-насос, эвакуируют установку и к (раствору в колбе постепенно прибавляют раствор цианида калия. Сразу начинается выделение дициана. Скорость выделения дициана регулируют добавлением раствора цианида калия. Бсл.и реакция замедляется, реакционную колбу нагревают на водяной бане. Выделяющийся газ, содержащий до 20% двуокиси углерода проходит через конденсатор, охлаждаемый в бане со льдом и постушает в колонки, содержащие плавленый хлорид кальция и пятиокись фосфора. Высушенный газ поступает в конденсатор, погруженный- в сосуд Дьюара с охлаждающей омесью из твердой углекислоты и ацетона, имеющей температуру около —55 С, где он конденсируется в твердом состоянии. Несконденсированные газы (двуокись углерода, воздух) откачивают с помощью насоса. Для удаления несконденсярованных газов, -растворенных. в твердом дициане, конденсатор нагревают так, чтобы находящийся в. нем дициан расплавился и превратился в жидкость при этом растворенные газы выделяются. Снова переводят дициан Б твердое состояние, охлаждая конденсатор до —55 °С, и откачивают газ над твердым дицианом. Описанную операцию выделения и откачивания растворенных яесконденсирован-ных газов повторяют 2—3 раза. В случае необходимости проводят дополнительную очистку газа с помощью прибора для фракционированной дистилляции в вакууме (см. рис. 91, стр. 260). [c.259]

    Исходным сырьем [6, 7] при получении мономера служит фенол, двуокись углерода, окись этилена и метанол. Вначале из фенола по реакции Кольбе получают я-оксибензойную кислоту. Затем проводят ее оксиэтилп-рование и полученную и-оксибензойную кислоту превращают в метиловый эфир, который легко очищается перекристаллизацией из органических рао творителей (например, четыреххлористого углерода) и перегонкой под вакуумом. Температура его плавления 65—66 °С [8]. Полиэфир получают способом расплавной поликонденсации под вакуумом с выделением метилового спирта. [c.266]

    Таким образом, кислотность малонового эфрра позволяет получать замещенные малоновые эфиры, содержащие одну или две алкильные группы. Как же можно использовать эти замещенные малоновые эфиры для получения карбоновых кислот В разд. 29.6 было показано, что при нагревании выше температуры плавления малоновая кислота легко теряет двуокись углерода, давая уксусную кислоту аналогичным образом замещенные малоновые кислоты легко теряют двуокись углерода, и образуются замещенные уксусные кислоты. Полученные моноалкил- и диалкилмалоновые эфиры легко превращаются в монокарбоновые кислоты в результате гидролиза, подкисления и нагревания. [c.872]

    Карбоксилированне при температуре от —40 до —45° приводит к более высоким выходам кислоты по сравнению с выходом при температуре —20°. Выход рассчитан на вступающую в реакцию двуокись углерода, причем в данном случае 13,3жмо-лей ее было выделено обратно. После перекристаллизации из петролейного эфира температура плавления кислоты повысилась до 57,5—59°. В специальных опытах из 3-фенил-1-бромпро-пана была получена 4-фенилмасляная кислота с выходом 90—96%. [c.81]

    Б атмосфере инертного газа при температурах зыше температуры плавления при деструкции полиамидов выделяются вода, двуокись углерода и обычно небольшие количества аммиака. При деструкции ПА 66 выделяется еще некоторое количество цикло-нентанона. При продолжительном нагревании происходит сшивание полиамида и он становится нерастворимым в муравьиной кислоте. Деструкция ПА 66 сопровождается уменьшением содержания карбоксильных концевых групп. [c.89]

    Тетраацетат свинца кристаллизуется в виде бесцветных призм с температурой плавления 175—180°. Соль неустойчива на воздухе, быстро гидролизуется, давая коричневую двуокись свинца. Эту реакцию можно использовать для определения влаги в газах. Тетраацетат свинца несколько растворим в хлороформе, четыреххлористом углероде и бензоле, и если растворитель совершенно безводный, то тетраацетат можно извлечь неизмененным. Умеренно растворим в холодной уксусной кислоте, хорошо — в горячей. Димрот и Швейцер [4] показали, что в уксуснокислом растворе тетраацетат свинца можно употреблять в качестве окислительного агента для многих целей. Тетраацетат свинца растворяется в концентрированных галоидоводородных кислотах, давая кислоты состава НгРЬХе. [c.51]

    В качестве общего синтетического метода применяется конденсация ангидридов р-замещенных глутаконовых кислот с одним или двумя молями галогенангидрида кислоты в присутствии пиридина. При этом получаются С-ацилированные производные типа XXII или XXIII [49]. Эти соединения при нагревании выше их температуры плавления легко теряют двуокись углерода и образуют с хорошими выходами производные а-пирона типа XXIV и XXV. [c.280]

    Соединение XIII гидролизуется концентрированной соляной кислотой в соответствующую дикарбоновую кислоту, которая при плавлении теряет двуокись углерода и образует 2,6-дитиометил-1,4-тиопирон (XIV) [95]. [c.306]

    Кумарин-4-уксусные кислоты (XVU) являются винилогами малоновой кислоты и в значительной степени подобны этому соединению. При температуре плавления они теряют двуокись углерода и в условиях реакции Кневенагеля [157] конденсируются с ароматическими альдегидами. Продукты конденсации очень легко отщепляют двуокись углерода, образуя кумарил- [c.149]

    При нагревании кислоты VIII выше температуры плавления выд ля ется двуокись углерода и образуется непредельное соединение (IX). С Другой стороны, при нагревании этилового эфира кислоты VIII, происходит замыкание цикла с образованием соединения VI. Образование. транс-кислоты при омылении эфира свидетельствует о том, что при этерификации не происходит превращения транс-кислоты в г ыс-кислоту.  [c.213]

    При нагревании в вакууме выше температуры плавления моноэфир начинает выделять двуокись углерода и перегоняется диэтиловый эфир фуроксандикарбоновой кислоты, что трактовалось как своего рода диспропорционирование [414]  [c.292]


Смотреть страницы где упоминается термин Углерод двуокись см плавления: [c.171]    [c.275]    [c.444]    [c.66]    [c.227]    [c.66]    [c.227]   
Техника низких температур (1962) -- [ c.307 ]




ПОИСК





Смотрите так же термины и статьи:

Двуокись плавления

Температуры кипения и плавления двуокиси углерода

Теплоты образования и плавления двуокиси углерода



© 2025 chem21.info Реклама на сайте