Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Первые органические синтезы

    Эта реакция являлась одной из первых среди промышленно реализованных методов органического синтеза. Этим путем до сих пор получают фенолы (р-нафтол, резорцин, крезолы и даже небольшую часть фенола), для чего соли сульфокислот подвергают щелочному плавлению  [c.328]

    Почему именно ацетилен Всю первую половину нашего века в учебниках по органической химии можно бьшо увидеть ацетиленовое дерево — схему, на которой от ствола-ацетилена отходили многочисленные сучья, делившиеся затем на ветви и веточки различных синтезов. В общей сложности их число переваливало за 300. Практически всю промышленность органического синтеза [c.105]


    Промышленность основного органического синтеза является относительно МОЛОДОЙ отраслью химической промышленности. Если производство химических продуктов на основе углеводородов ароматического ряда получило широкое развитие еще во второй половине XIX века благодаря использованию в качестве сырья продуктов сухой перегонки каменного угля, то промышленность основного органического синтеза возникла только после первой империалистической войны. Возникновению и развитию этой новой отрасли промышленности способствовало появление и притом в громадных количествах углеводородного сырья, в основном алифатических углеводородов. Обилие этого вида сырья появилось в результате новых прогрессивных методов переработки нефти — деструктивной переработки (крекинг, пиролиз). [c.5]

    Благодаря высокой реакционной способности многие металлорганические соединения (особенно соединения металлов первой и второй групп периодической системы) нашли широкое применение в органическом синтезе. Так, на способности металлорганических соединений взаимодействовать с серой, кислородом, галогенами, селеном, теллуром основано их применение для получения спиртов, тиоспиртов и других производных углеводородов. Особенно широкое применение в синтезе углеводородов и их производных (спирты, альдегиды, кетоны, кислоты) находит реакция присоединения металлорганических соединений по кратным связям С=С, С=0, =N, N, =S, N=0 и S=0. [c.207]

    ПЕРВЫЕ ОРГАНИЧЕСКИЕ СИНТЕЗЫ [c.239]

    Получение из простых молекул соединений более сложных можно осуществить в частности наращиванием длины углеродного скелета или путем взаимного соединения двух углеродных атомов реагирующих молекул. Следует признать, что первые органические синтезы были выполнены задолго до М. Бертло. [c.176]

    О теплотворности мочевины и первых органических синтезах.— В сб. Пятая научная сессия [Ярославского государственного медицинского института] . Тезисы докладов. Ярославль, с. И. [c.10]

    Сокрушительный удар по виталистическому учению нанесли первые органические синтезы они наглядно показали, что из неорганических веществ при определенных условиях можно получить органические вещества. [c.4]

    Однако дальнейшее развитие химии требовало уничтожения этой искусственной пропасти между органической и неорганической химией, чему способствовали блестящие успехи органического синтеза в конце 50-х годов, связанные с работами М. Бертло. Это был серьезный удар по теории жизненной силы , и органический синтез стал прочным мостом, объединившим органическую и неорганическую химию в единую науку. В. ю же время успехи первых органических синтезов укрепили теорию типов Жерара, рассматривавшую органические соединения как производные неорганических. С другой стороны, необходимо отметить, что многие химики-неорганики придерживались в то время системы атомных весов Берцелиуса, а не эквивалентов Гмелина. Ведь система Жерара, опиравшаяся на понятие о молекуле и на разграничение понятий атома, молекулы и эквивалента, являлась наглядным опровержением систе.мы атомных весов Берцелиуса, выросшей в значительной степени на объемной основе. Исправление значений атомных весов металлов, предложенное Жераром, должно было служить дальнейшим шагом к этому сближению. Этот шаг и был сделан Канниццаро. [c.308]


    Таким образом, оба открытия Кирхгофа, доведенные до стадии практического использования, представляли собою первый пример активного вмешательства химика в область биологических процессов. Важность этого шага в истории развития химии, даже в истории естествознания вообще, трудно переоценить. Он может находиться в сравнении с первыми органическими синтезами, которые указали на принципиальные возможности воспроизведения человеком продуктов органической природы. [c.22]

    Синтез кремнийорганических мономеров с помощью металлорганических соединений относится к первым промышленным методам синтеза алкил (арил) хлорсиланов. Для проведения этих реакций можно использовать ртуть-, цинк-, натрий-, литий-, алюминий- и магнийорганические соединения. Наиболее распространен магний-органический синтез (метод Гриньяра). [c.239]

    В СССР первые установки по каталитическому восстановлению оксидов азота введены в эксплуатацию в 1965 г. На многих химических предприятиях была реализована схема каталитического восстановления оксидов азота с применением природного газа, разработанная Государственным научно-исследовательским и проектным институтом азотной промышленности и продуктов органического синтеза (ГИАП). Катализатором служит палладий, нанесенный на активный оксид алюминия. Тепло, выделяющееся в процессе восстановления, можно использовать в газовых турбинах для получения дополнительной энергии, что улучшает экономические показатели процесса очистки. [c.65]

    Из продуктов первого сопряжения получают продукты второго сопряжения, затем третьего и т. д. С каждым следующим шагом число наименований промышленно выпускаемых продуктов возрастает. Сегодня в ассортименте промышленности органического синтеза насчитывается около 15000 продуктов, и каждый является сырьем для последующих синтезов. Фрагмент такой картины дан на рисунке. [c.103]

    К первой группе относятся сточные воды нефтеперерабатывающих и нефтехимических заводов, предприятий органического синтеза и синтетического каучука, коксохимических, газослан-цевых и др. Они содержат нефть и нефтепродукты, нафтеновые кислоты, углеводороды, спирты, альдегиды, кетоны, поверхностно-активные вещества, фенолы, смолы, аммиак, меркаптаны, сероводород и др. [c.74]

    Окись пропилена кипит при 34°. В основном ее применяют как полупродукт для органических синтезов. Главным производным окиси пропилена является пропиленгликоль, однако из нее получают также целый ряд продуктов, подобных тем, которые производят из окиси этилена. Пропиленгликоль, получаемый гидратацией окиси под давлением, кипит при 188°, т. е. на 9° ниже, чем этиленгликоль. Часто пропиленгликоль применяют вместо этиленгликоля, поскольку первый относительно менее токсичен и Практически не обладает корродирующими свойствами. В 1950 г. производство пропиленгликоля в США составило около 40 тыс. т. Распределение этого количества между потребителями приводится ниже [33]  [c.371]

    В семилетием плане развития народного хозяйства СССР значительное место отводится развитию химической промышленности и в первую очер( дь — промышленности органического синтеза. В связи с этим в настоящее время широким фронтом ведутся научно-исследовательские и проектные работы по разработке новых процессов получения различных синтетических продуктов, полимерных материалов, жирных кислот и спиртов, искусственных волокон и т. д. В большинстве процессов органического синтеза в результате превращений получается не одно какое-либо вещество, а сложная смесь, и выделение из смесей целевых продуктов и их очистка нередко представляет собой задачу, более сложную, чем сам процесс синтеза. [c.3]

    Другой характерной чертой четвертого периода должны явиться интенсивные поиски методов управления газофазным окислением углеводородов. Последнее настоятельно диктуется острой потребностью народного хозяйства и в первую очередь промышленности тяжелого органического синтеза в таких кислородсодержащих продуктах окисления углеводородов, как альдегиды, кетоны, спирты, кислоты, перекиси. [c.10]

    Элементоорганические соединения -элементов. Органические соединения элементов НЕ подгруппы. Элементы подгруппы цинка имеют замкнутую устойчивую Зс/-электронную подоболочку, которая обычно не участвует в образовании химических связей элементов. Главную роль при этом играет внешняя 4з электронная подоболочка, по электронной конфигурации которой эти элементы являются частичными электронными аналогами элементов ПА подгруппы. Поэтому элементоорганические соединения элементов подгруппы цинка имеют определенное сходство с магнийорганическими соединениями. Причем цинкорганические соединения были первыми элементоорганическими соединениями, примененными для органического синтеза. В частности, А. М. Бутлеров подтвердил свою теорию строения органических соединений синтезом неизвестного в то время третичного бутилового спирта с использованием диме-тилдинка (СНз)2гп. Однако по реакционной способности, широте применения и удобству использования цинкорганические соединения уступают магнийорганическим соединениям. Диэтилцинк применяется в одном из промышленных способов получения тетраэтилсвинца. [c.598]


    Пособие состоит из четырех глав. В первой главе изложены сведения о посуде, оборудовании и приборах, используемых в лаборатории органического синтеза, описаны разделение и очистка органических веществ, дано определение некоторых констант, рассмотрены свойства растворителей, правила техники безопасности и первая помощь при несчастных случаях. Во второй главе дано описание различных типов химических превращений, их механизм и приведены синтезы, протекающие в соответствии с этими механизмами. Здесь же рассмотрены основные теоретические и практические вопросы. Третья глава посвящена функциональному анализу и идентификации органических соединений как химическими, так и [c.3]

    За 150 лет, прошедших со времени первых успешных экспериментов Вёлера, органический синтез дал в руки химика арсенал изощренных методик, приводящий даже в некоторое замешательство своим объемом. Однако наблюдая легкость, с которой живые организмы создают сложные структуры в практически водных средах и при температурах немного выше комнатной, химик убеждается, что его прогресс в этой области не столь уж велик. Действительно, химики-органики постоянно стараются создать более быстрые, более простые и более дешевые препаративные методы. Поэтому эта книга является попыткой собрать рассеянные в литературе примеры новой техники проведения органических реакций — техники, которая начала использоваться только в последнее десятилетие. Во многих случаях новая методика снимает обычное требование проведения органических реакций в гомогенных, часто абсолютных , т. е. тщательно высушенных, средах. При межфазном катализе (МФК) субстрат, находящийся в органической фазе, учат ствует в химической реакции с реагентом, который находится в другой фазе — жидкой или твердой. Реакция осуществляется при помощи агента-переносчика. Этот агент, или катализатор, способен солюбилизировать или экстрагировать в органическую среду неорганические и органические ионы в форме ионных пар. [c.9]

    Основной, или тяжелый органический синтез, в последние десятилетия развивается быстрыми темпами. Это объясняется, во-первых, тем, что органический спнтез основывается главным образом на дешевом и неиссякаемом источнике сырья — углеводородах нефтеперерабатывающей промышленности и природного газй во-вторых, оп превратился по существу в гигантский цех по производству или подготовке многих десятков химических продуктов, которые или заменили собой природные вещества или приобрели самостоятельное значение. [c.3]

    Вот почему Энгельс так высоко оценивал первое искусственное получение Вёлером органического вещества (мочевины) из неорганического. В нашей литературе одно время шло обсуждение истории этого открытия, сделанного Вёлером можно ли его называть первым органическим синтезом или же это не был синтез в строгом смысле слова, так как Вёлер получил мочевину путем простой перегруппировки атомов в молекуле циановокислого аммония, который считался неорганическим соединением. Синтез же предполагает создание более сложной молекулы из более простых путем их соединения. [c.142]

    Иногочисленные авторы, непонявшие сущность синтеза Велера, исходят из представления о том, что мочевина является типичным органическим веществом, а цианат аммония — типичным минеральным соединением. Нанример, Вальден, посвятивший специальную речь столетию открытия Велера ( Значение открытого Велером синтеза мочевины ), хпшет Велеру принадлежит открытие первого органического синтеза , или игра случая дала в руки Фр. Велера открытие искусственного получения типичного органического вещества (мочевины) [11] . Основной причиной отнесения мочевины к органическим соединениям послужило то обстоятельство, что она впервые была обнаружена в выделениях животных и оказалась главным продуктом распада белков в организме млекопитающих. Этот аргумент по происхождению архаичен и относится к периоду развития естествознания, когда вещества разделялись на минеральные, растительные и животные. К тому же животные в результате обмена веществ выделяют некоторые, несомненно, минеральные соли. [c.18]

    К таким эффективным методам относится каталитический крекинг, дающий авиабензины сорта 100/130, 95/130 и увеличивающий ресурсы сырья для производства высокооктановых компонентов. Как известно, расширение производства высокооктановых бензинов может идти двумя путями во-первых, путем искуссг ,ек ого расширения сырьевой базы производства высо-кооктановы присадок, что еще более повышает их стоимость, так как оборудование органического синтеза на базе индивидуальных легких углеводородов требует очень высокого расхода металла на единицу веса полученной продукции и обязательно расхода более или менее дорогого катализатора в процессе, во-Бторых, путем организации такого качества основного базового авиакомпонента, при котором расход высокооктановых присадок будет меньшим. [c.4]

    Синтез ацетилена из метана (а также из смеси газов, содержащей метан) представляет собой один из примеров органического синтеза в электрическом разряде, осуществленного на практике в значительных масштабах и усношно конкурирующего с обычным, карбидным методом получения ацетилена. Для получения ацетиленл из метана применялись различные формы электрического разряда. Тпк как, однако, уже первые исследования показали, что и тихом разряде выход ацетилена ничтожно мал, то все дальнейшие попытки осуществления этой реакции с выходом jH , представляющим практический интерес, в основном были сосредоточены на использовании дугового разряда. (Литературу см. в [4, 41].) [c.181]

    Органический слой с верха сепаратора 12 подают последовательно в две ректификационные колонны. В первой (13) отгоняют образе вавшийся при разложении диоксана изобутилен, который возврз1цают на первую стадию синтеза. Затем в колонне 14 отделяют изопрен от более высококипящего остатка (непревращенный диоксан и побочные продукты). Для окончательной очистки изопрен громывают водой, осушают азеотропной перегонкой и прово- 1ят заключительную ректификацию. На этих стадиях к нему во из-Г)еж .11ие полимеризации добавляют ингибитор. [c.559]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    МЕТАН СН4 — первый член гомологического ряда предельных углеводородов, Бесцветный газ, не имеющий запаха, малорастворим в воде. М. образуется в природе при разложении органических веществ без доступа воздуха на дне болот, в каменноугольных залежах (отсюда другое название М.— болотный, нли рудничный газ). В большом количестве М, образуется при коксовании каменного угля, гидрировании угля, нефти. В лаборатории М. получают действием воды на карбид алюминия. Л, — главная составная часть природных горючих газов. М. легче воздуха, смеси М. с воздухом взрывоопасны, М. горит бледным синим пламенем. М, широко используется в промышленности и быту как топливо, для получения водяного и синтез-газа, применяемых для органического синтеза углеводородов с большой молекулярной массой, спиртов, ацетилена, сажи, хлористого метила, хлорбро . метана, ни-грометака, цианистоводородной кислоты и др. [c.160]

    По-разному решается вопрос о связи иефтеперерабатыБаюш,его завода с нефтехимическими процессами. Некоторые нефтеперерабатывающие заводы дают только исходные компоненты сырья для нефтехимического синтеза (ароматические углеводороды, газообразные олефины и пр.). Эти компоненты могут передаваться на нефтехимические предприятия либо в виде концентратов, либо в чистом виде. В соответствии с этим схема сопутствующего такому заводу нефтехимического предприятия может начинаться или с устаповки подготовки сырья (четкой ректификации, экстракции, газоразделения), или непосредственно с установок соответствующего органического синтеза. Ииогда на нефтеперерабатывающем заводе осуществляется не только получение и выделение мономера, но и первая ступень синтеза. Так, известны заводы, на которых производится кумол, поступающий затем иа нефтехимическое предприятие с целью последующего окисления до фенола и ацетона пpaliтикyeт я также получение на нефтеперерабатывающем заводе тетрамера пропилена с последующим направлением его для производства сульфонола и т. д. [c.361]

    Так продолжалось десятилетиями, и ресурсов коксохимического производства вполне хватало для нужд органического синтеза. Но уже в первые послевоенные годы, когда производство полиме-р<5В езко возросло, стало понятно, что только на коксохимическое производство надеяться нельзя—его рост вполне достаточен для металлургии, но вот нужд химии он обеспечить не может. К тому же рост металлургического производства замедлился, а, например, в США и вовсе прекратился. Появилась даже тенденция к абсолютному снижению объемов производства. [c.115]

    Процессы крекинга аключаются в первую очередь в превращении пара-финоиых углеводородов либо как таковых, либо в виде алкильных заместителей нафтеновых или ароматических циклов. Процессы получения крекинг-бенуиггов закономерно сопровождаются образованием газообразных алифатических углеводородов, так называемых крекинг-газов, которые состоят из смесей олефинов и нарафинов и являются важнейшим сырьем для промышленности органического синтеза. Поэтому следует поближе познакомиться с этими процессами и с химическими превращениями, лежащими в их основе. [c.224]

    Прежде всего подчеркнем, что все достижения современной промышленной органической химии основьшаются не только на уникальном составе нефти, другого природного сырья и их основополагающем значении для существования и развития цивилизащш, а в первую очередь на успехах органической химии в области синтеза, фундаментальных исследоваш1Й и создании основ технологии получения органических веществ. Не случайно промышленный органический синтез является не только одной из основных, но и наиболее интенсивно развиваю-пщхся отраслей промышленности. [c.9]

    Реакция окиси углерода с водой и водородом привлекает внимание как возможны переход к затлене кеФти в органическом синтезе углем. Первая ступень газийикаши угля [c.67]

    В связи с широи л [I] применением в промышленности органического синтеза углеводородов, содержащихся в газообразных и жидких продуктах переработки нефти, особое значение приобретают методы детального исследования зтих продуктов и в первую очередь методы газожидкостной хроматографии. [c.158]

    Начало исследованию кремнийоргАнических соединений было положено Д. И Менделеевым. В 1845 г французский химик Ж Эбельман получил первое органическое соединение кремнии — теграэтоксисилан 81(ОС2Н5)4, а в 1863 г. Фридель и Крафте синтезировали тетраэтилсилан 81(С2Н5)4. Первые результаты в области синтеза этих веществ были настолько обнадеживающими, что появилась идея на базе кремния создать новую органическую химию. Однако вскоре наступило разочарование кремний в отличие от углерода не образует длинных устойчивых полимерных цепей кремнийорганические соединения не обладают таким многообразием и многочисленностью, как соединения углерода. Поэтому интерес к химии кремния стал постепенно угасать. [c.179]


Смотреть страницы где упоминается термин Первые органические синтезы: [c.15]    [c.510]    [c.4]    [c.21]    [c.95]    [c.558]    [c.352]    [c.230]    [c.302]    [c.522]    [c.142]    [c.153]    [c.208]    [c.3]   
Смотреть главы в:

История химии -> Первые органические синтезы




ПОИСК





Смотрите так же термины и статьи:

Никулина Исторический очерк развития органического синтеза в первой половине XIX в. (до 1860-х годов)

Обработка металлов и первые применения для органического синтеза Кислород

Органические вещества соединения первые синтезы



© 2025 chem21.info Реклама на сайте