Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические соединения кальция, стронция и бария

    Дальнейшие особенности органических соединений кальция, бария и стронция рассмотрены в разделе, посвященном реакциям этих соединений. [c.494]

    РЕАКЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ БЕРИЛЛИЯ, КАЛЬЦИЯ, СТРОНЦИЯ И БАРИЯ [c.50]

    Соединения щелочных и щелочноземельных металлов. В основном предложены соли натрия, калия, лития, магния, кальция, стронция, бария с производными алкилфенолов и органических кислот (карбоновые, дитиофосфорные, дитиокарбоновые). [c.12]


    Органические производные кальция, стронция и бария изучены сравнительно мало. Большое значение имеют только соединения магния. [c.213]

    Органические соединения кальция, бария и стронция еще менее изучены, чем органические соединения бериллия. Не все методы синтеза, применяемые для получения бериллийорганических соединений, могут быть использованы в этих случаях. Неприменимы для их синтеза ртутноорганические соединения, а также магнийорганические соединения. [c.492]

    Этим методом могут быть получены органические соединения большинства металлов I—IV групп, за исключением переходных элементов и, очевидно, таких немногих элементов, как бор и углерод (см. специальные разделы в соответствующих главах). Это лучший метод получения органических производных щелочных металлов, магния, кальция, стронция и бария, особенно в том случае, если эти соединения используются как промежуточные продукты в дальнейших синтезах и не требуется их выделения в чистом виде. Если необходимо выделить чистые алкильные пройзводные щелочных металлов, то этот метод не является единственным, так как в органических растворителях нерастворимы как металлалкилы, так и галогениды металлов, являющиеся побочными продуктами реакции, и разделение их практически невозможно. Этот метод можно использовать для приготовления органических производных алюминия при условии, что алюминий предварительно амальгамируется для удаления поверхностной окисной пленки. Аналогичным образом могут реагировать в виде амальгам и другие металлы, например олово и свинец. [c.62]

    Органические соединения более электроположительных элементов — кальция, стронция и бария довольно схожи с соединениями лития и натрия по их способности присоединения к этиленовым связям и в реакциях ме-таллирования, хотя в общем они несколько менее реакционноспособны. Бериллий, подобно магнию, образует органические соединения, которые существенно ковалентны по структуре и относительно реакционноспособны, хотя и уступают магнийорганическим соединениям. [c.470]

    Эти элементы второй группы дают ионы двухвалентных металлов с электронной структурой, аналогичной структуре благородных газов. В ряду Са, Sr и Ва химические и физические свойства элементов и их соединений являются функцией их ионных радиусов.. При образовании комплексов с органическими реагентами эти ионы металлов реагируют предпочтительно с кислородсодержащими лигандами. Кальций дает более стабильные комплексы, чем стронций и барий кроме того, он может образовывать комплексы с лигандами, в состав которых входят азотсодержащие донорные группы, например с ЭДТА, эриохром черным Т и 2,2 -(этандиилн-дендинитрило)дифенолом. Взаимодействие кальция, стронция и бария с органическими реагентами не избирательно. Для маскирования Са, Sr и Ва пригодны цитрат, тартрат и хелоны Са может быть маскирован также полифосфатом. [c.419]


    Э. А. Остроумов и Б. Н. Иванов-Эмин предлагают осаждать гидроокись бериллия слабым органическим основанием а-пиколином в присутствии хлорида аммония. В рекомендуемых авторами условиях осаждения в растворе устанавливается pH = 7. При этом происходит количественное отделение бериллия от кальция, стронция, бария, магния и щелочных металлов, а также от марганца, кобальта, никеля, цинка, образующих растворимые комплексные соединения с а-пиколином. Доп. перев.  [c.583]

    Известны соединения, в которых органические радикалы присоединены к бериллию, магнию, кальцию, стронцию, барию, кадмию и ртути, т. е. ко всем элементам П группы, за исключением радия. По физическим константам среди этих соединений имеются вещества от нелетучих, неплавких солеобразных соединений до летучих, по существу ковалентно построенных веществ. В химическом отношении к соединениям этого типа относятся как чрезвычайно реакционноспособные, так и инертные вещества. Широкий диапазон свойств можно сопоставить с ионностью связи С—М, которая колеблется от 35% для бария, наиболее электроположительного элемента группы, до 11 % для наиболее электроотрицательного — ртути. Значения электроотрицательностей и процент ионности связи приведены в табл. 1 .  [c.93]

    Не растворяются в царской водке хлорид, бромид, иодид и цианид серебра, сульфаты стронция, бария и свинца, фторид кальция, сплавленный хромат свинца, окись алюминия, окись хрома, двуокись олова, двуокись кремния, элементарный углерод и кремний, карборунд и многие силикаты. Для переведения в раствор этих соединений их необходимо подвергнуть разложению. Из числа веществ, встречающихся в качественном анализе, в органических растворителях, например диэтиловом эфире, этиловом спирте, хлороформе, бензоле, сероуглероде, четыреххлористом углероде, растворимы элементарные бром и иод. [c.311]

    Спектрофотометрические методы были успешно применены для изучения сольватации ионов в спирто-водных растворах [262], определения констант диссоциации органических соединений [263, 264, 277—279], изучения реакции взаимодействия гетероорганических соединений с ионами магния, стронция, бария, кальция, цинка [265—267], фотохимических превращений тионовой кислоты [276] и эргостерипа в витамин В2 [274, 275], а также для исследования реакций изомеризации, например, аниотропных перегруппировок спиртов [273]  [c.68]

    К комплексам этого типа можно отнести также комплексы типа МАд/(НА) , содержащие дополнительные молекулы органического реагента. Установлено, что такие комплексы образуются при высоких концентрациях реагента возможно, что молекулы органического реагента могут замещать во внутрикомплексном соединении молекулы воды. В результате этого сильно гидратированные соединения (например, оксихинолинаты кальция, стронция, бария, цинка, кадмия и т. д.) становятся гидрофобными и легко экстрагируются органическими растворителями [253, 973]. [c.21]

    Алкилсиликонаты щелочных металлов образуют трудно растворяющиеся в воде соединения почти со всеми растворимыми в воде солями кальция, стронция, бария, цинка, хрома, никеля, кобальта, кадмия, меди, свинца, молибдена, ртути и других металлов. Образование нерастворимых алкилсиликонатов переходных металлов можно использовать для гидрофобизации текстильных тканей и других органических материалов [39]. [c.45]

    Однако можно предполагать, что поиски методов синтеза органических соединений кальция, бария и стронция будут продолжаться, так как каль-цийорганические соединения представляют несомненный интерес для целей препаративного синтеза. В некоторых случаях применение последних в качестве металлирующих агентов приводит к необычной ориентации заместителя (см. стр. 498). [c.492]

    Во фтористом водороде хорошо растворяются сульфаты и нитраты одновалентных металлов и аммония, менее растворимы сульфаты и нитраты магния, кальция, стронция, бария. Галоидные и цианистые соли щелочных и щелочно-земельных металлов растворяются во фтористом водороде с выделением соответствующих кислот. Галоидоводороды и соли тяжелых металлов в безводном фтористом водороде не растворимы. Хорошо растворимы в нем кислородсодержащие органические соединения, заметно растворимы также ароматические углеводороды. [c.105]

    Следует подчеркнуть, что селективность этих экстрагентов для щелочных метал.лов не связана с какими-либо специфическими свойствами фенолов, проявляемыми по отношению именно к этим металлам. Щелочные металлы селективно извлекаются не вследствие образования особо прочных экстрагируемых соединений или других особенностей экстракционных равновесий, а потому только, что экстракция возможна из щелочных растворов, в которых большинство катионов образует труднорастворимые осадки гидроокисей или, как это имело место в работе [4], существует в виде анионных комплексов в присутствии комплексообразователя. Кстати, в этой же работе показано, что щелочноземельные элементы — кальций, стронций, барий—гидроокиси которых сравнительно хорошо растворимы, экстрагируются 4-в гор-бутил-2-(а-метилбензил)фенолом совместно с щелочными металлами. Более того, 4-7 грет-ундецилфенол, как и другие органические кислоты, экстрагирует кальций лучше щелочных металлов [7]. [c.4]


    Описанную технику можно распространить на неводные растворы. Найдено, что ее можно применять при анализе соединений, содержащих литий, кальций, стронций и барий, присутствующих в нефтепродуктах . Операции, проводимые при определениях, аналогичны описанным при анализе воды, за исключением того, что в качестве растворителя, требуемого для разбавления, применяют смесь равных объемов бензола и изопропилового спирта. Для приготовления стандартов можно использовать продажные нафтенаты металлов, растворимые в органических растворителях. [c.161]

    Соединение плавится при 27° и в отличие от этилнагрия растворимо в бензоле. Аналогичное соединение калия плавится при 68—71° [81], соединение рубидия — при 70—75° [82], а соединение цезия — при 37° [83]. Этильные производные кальция, стронция и бария также образуют с диэтилцинком продукты присоединения 1 1 [2, 8]. По своей реакционной способности эти комплексы значительно более похожи на органические соединения щелочных металлов, чем на органические соединения цинка. Это говорит о том, что третья или четвертая алкильные группы связаны с цинком непрочно. С другой стороны, в диэтилцинке комплексы образуют проводящие растворы [85], в которых анионами являются (С2Н5)з2п" (табл. 6). Увеличение проводимости с увели- [c.121]

    Пиридин, являясь слабым основанием, образует с сильными минеральными и органическими кислотами соли, в водном растворе сильно гидролизованные. С уксусной кислотой и угл. -кислотой пиридин прочных солей не образует это представляет большое удобство при пользовании им для отделения полуторных окислов от кальция, стронция и бария. Действие пиридина аналогично действию аммиака. Если к слабо кислому (азотно- или солянокислому) раствору, содержащему железо, алюминий, хром, марганец, кобальт и никель, прибавить пиридин, то железо, алюминий и хром выделяются в осадок в виде гидроокисей Ре (ОН),,, А1(0Н)з и Сг(ОН)з. С марганцем е, кобальтом и никелем пиридин образует комплексные растворимые соединения. При прибавлении пиридина к слабо кислому раствору устанавливается определенная концентрация водородных ионов, по нашим наблюдениям, примерно соответствующая pH = 6,5. [c.21]

    Подробные исследования процесса озоления нефтепродуктов имеются в работах [37, 63]. Для определения содержания металлов в их органических солях химическим методом пользуются одним из следующих способов. Пробу озоляют прямым или кислотным методом, золу растворяют и раствор анализируют. По другому способу пробу сжигают и по массе окисла подсчитывают содержание металла. При кислотном озолении расчет ведут по массе полученного сульфата. Иногда соединения восстанавливают водородом до металла и определяют его массу. Для получения окислов алюминия, бария, ванадия, кальция, меди, железа, свинца, магния, марганца, серебра, натрия, никеля, калия, стронция и цинка пробу заворачивают в фильтровальную бумагу и прокаливают при 700—1100°С [64]. [c.18]

    Гетерополикислоты молибдена кристаллизуются с различным числом молекул воды, обладают большим молекулярным весом, растворимы в воде и различных органических растворителях, осаждают белки, образуют плохо растворимые соединения с растворами солей серебра, свинца, бария, стронция, кальция, цезия или с различными органическими аминами, алкалоидами и др. [c.320]

    Нормальное состояние клеток находится в зависимости от определенного соотношения ионов натрия, калия, кальция и магния. К числу биоэлементов следует отнести также многие микроэлементы (кобальт, бром, иод, марганец, бор, мышьяк, фтор, свинец, ванадий, хром, никель, стронций, серебро, барий, рубидий) не только потому, что их присутствие доказано в организмах животных, но и потому, что ряд этих элементов имеет существенное значение в биохимических и физиологических процессах, они являются абсолютно необходимыми для жизни. К ним относятся металлопротеиды — медь, отчасти ванадий, являющиеся одними из основных составных частей кровяных пигментов и дыхательных компонентов различных животных. Сюда же относятся марганец, который имеет исключительное значение в ходе ферментативных процессов растительных клеток металлопротеиды, иод и бром, которые в соединении со сложными органическими веществами принимают участие в сложных физиологических процессах. Достаточно при этом сослаться на роль гормона щитовидной железы—тиреоглобулина, в молекуле которой иод играет важную роль. [c.417]

    Введение в каталитические композиции, содержаш ие галогениды титана, циркония, гафния или германия и органогалогениды алюминия, различных карбидов и ацетилидов позволяет повысить молекулярный вес получаюш егося полиэтилена [228]. Эффективны карбиды М Са и ацетилиды М(С = R)y, являюш иеся производными лития, натрия, калия, рубидия, цезия, магния, бария, стронция, кальция, цинка, кадмия, ртути, меди, серебра и золота. Вместо органогалогенидов алюминия можно использовать соответствуюш ие соединения галлия, индия, таллия и бериллия или смеси органического галогенида и одного из следуюш их металлов лития, натрия, калия, рубидия, цезия, бериллия, магния, цинка, кадмия, ртути, алюминия, гал.тия, индия и таллия или комплексные гидриды, содержаш,ие ш,елочной металл и алюминий, галлий, индий и таллий. Предпочтительные молярные соотношения карбид или ацетилид органоалюминий галогенид галогенид титана лежат в интервале (0,5—10) (0,2-3) 1. [c.113]

    Р-Изопропилтрополон образует с никелем, медью(П), цинком, железом(П1), индием, празеодимом и торием экстрагируемые комплексы типа МАд с кальцием, стронцием, барием, ураном(У1), европием, гольмием, иттербием и лютецием — комплексы типа MA,vHA. В присутствии ионов натрия цинк и никель могут экстрагироваться в вцде комплексов типов Ыа2пАд и ЫаЫ1Аз. Растворимость экстрагируемых внутрикомплексных соединений в органических растворителях низка (10" —10" М), что препятствует применению Р-изопропилтрополона для экстракции больших количеств металлов. В некоторых случаях молярные коэффициенты погашения экстрагируемых комплексов [например, меди(И), железа(П1), урана(У1)] довольно высоки при 400—450 ммк, где Р-изопропилтро-полон сам не поглощает, что позволяет применять его для фотометрического определения этих комплексов [264]. [c.120]

    Известно, что большинство солей сильных кислот (азотной, серной, соляной) хорошо растворяется в воде. Исключениями являются некоторые сульфаты (бария, стронция, кальция, свинца и закисной ртути), а также некоторые хлориды (серебра, закисной ртути и свинца). Часть этих соединений используют в количественном анализе для осаждения соответствующих ионов применение их описано в практической части. Однако большинство труднорастворимых соединений являются солями слабых кислот, кроме того, трудно растворимы также гидроокиси металлов. Поэтому для осаждения катионов в большинстве случаев их переводят в гидроокиси, а также в соли слабых неорганических или органических кислот. Из неорганических соединений наиболее широко используют сульфиды и гидроокиси металлов. [c.92]

    В то время как магнийорганические соединения со времени открытия Гриньяра (1900) приобрели исключительно важное значение в препаративной органической химии, остальные элементы подгруппы магния, отчасти вследствие меньшей доступности самих металлов, не привлекали к себе внимания исследователей, и лишь в последние годы начинает складываться химия металлоорганических соединений бериллия, кальция, бария и стронция. [c.5]

    Общие стабилизаторы для продуктов полимеризации. Стабилизаторами для любых продуктов полимеризации являются соли слабых органических кислот и металлов щелочных, щелочноземельных, С(1, РЬ, Мп, Си, и т. д. (например, стеараты или олеаты), часто совместно с мочевиной или ацетатами щелочных металлов. Предложены силикаты кальция, бария, стронция и сер ебра, растворимое стекло, а для поливинилхлорида и его сополимеров — окиси или карбонаты свинца и серебра, а также алкил- или арилпроизводные свинца или олова. Для стабилизации пленок из сополимеров винилхлорида и органических виниловых эфиров предложены Н3РО4, Р2О5, кислые фосфаты и сульфиды и другие сернистые соединения (ксантогенаты, тиофенолы, сернистые соединения группы противоокислителей, тиомочевина) . [c.185]

    В условиях экстракции бериллия, магния и кальция (2 об. % амина) даже 0,35 М (5%-ным) раствором оксихинолина в хлороформе заметные количества бария в органическую фазу не переходят. Если же выбрать условия для количественного извлечения стронция (5% оксихинолина, 4 об.% н-бутиламина), то извлекается около 40% бария. Улучшить извлечение можно путем повышения концентрации оксихинолина и амина или одного из них. Однако вследствие высокого поглощения реагентов фотометрическое определение бария невозможно. По этой же причине нельзя было установить фотометрическим методом и состав извлекаемого соединения. Лишь косвенно, как и в случае стронция, на основании повышения экстрагируемости бария в присутствии амина делался вывод о существовании бутиламмо-нийоксихинолината бария, которому по аналогии следовало бы приписать состав (С4Н9ННз)2(ВаОх4). [c.129]


Смотреть страницы где упоминается термин Органические соединения кальция, стронция и бария: [c.583]    [c.260]    [c.103]    [c.433]    [c.435]   
Смотреть главы в:

Общая органическая химия Т.7 -> Органические соединения кальция, стронция и бария




ПОИСК





Смотрите так же термины и статьи:

Барий от кальция и стронция

Барий соединения

Кальций соединения

Стронций

Стронция соединения



© 2024 chem21.info Реклама на сайте