Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Действие нафтенатов металлов

    Оказалось, что между защитными веществами (желатин, казеинат натрия, альбумины и пр.) существуют качественные различия. Например, золотое число гемоглобина в 6 раз больше, чем у желатина, а рубиновое число, наоборот, меньше в три раза. Таким образом, ни золотое, ни рубиновое, ни другое число не может служить полной характеристикой стабилизатора, так как защитное действие последнего на тот или иной золь специфично. Защитное действие белков, полисахаридов и некоторых других веществ используется при изготовлении и применении высокодисперсных препаратов на основе лекарственных веществ, нерастворимых в воде. Золи в неполярных средах можно защищать от коагуляции, добавляя к дисперсионной среде мыла поливалентных металлов (нафтенат алюминия, стеарат кальция [c.115]


    Нафтенаты тяжелых металлов образуются в результате обменного разложения нафтенатов щелочных металлов и окислов соответствующих металлов. Наибольшее промышленное значение имеют нафтенаты кобальта, марганца, свинца, цинка и железа. Для защиты деревянных конструкций, шпал, рыболовных снастей от действия вредителей и микроорганизмов применяют нафтенат меди. В качестве инсектицида в сельском хозяйстве используют нафтенаты щелочных металлов (натрия, калия). Они менее вредны для растений, чем нафтенаты меди, и обладают более направленным действием. Нафтенаты алюминия, кальция и цинка добавляют к пластическим смазкам для повышения их вязкости и предотвращения расслоения смазок под большим давлением. Нафтенаты свинца, цинка [c.261]

    Механизму действия моющих и диспергирующих присадок посвящено большое число исследований [15, с.. 89]. Действие таких присадок сводится в основном к тому, что они переводят нерастворимые в масле вещества в суспендированное состояние, удерживают мелкодисперсные частицы во взвешенном состоянии, не давая им укрупняться и оседать, а также разрыхляют и смывают отложения с поверхностей деталей. Кроме того, моющие и диспергирующие присадки могут влиять на процессы окисления масел, направляя их в сторону образования соединений, растворимых в масле. Поскольку моющие и диспергирующие присадки являются соединениями различных классов и по эффективности действия существенно различаются, предполагается, что механизм их действия неодинаков. Например, моющее действие нафтенатов свинца и кобальта объясняют их высокой способностью растворять осадки, влияние фенолятов металлов связывают со способностью нейтрализовать кислотные продукты окисления и образовывать вещества, действующие как антиокислители. [c.94]

    Каталитическое действие нафтенатов металла на окисление масла кислородом при 150° [c.361]

    Эти присадки предназначены для добавления к сернистым и высокосернистым дизельным топливам. Их действие основано на нейтрализации агрессивных продуктов сгорания сернистых топлив (окислы серы, главным образом трехокись) или на переводе их в неагрессивные продукты. В качестве таких присадок предложены амины, нитраты и карбонаты щелочных металлов, нафтенаты металлов, органические фосфиты и др. [c.331]

    Нафтенаты металлов (цинка) могут, как полагают, образовывать при сгорании соединения, предохраняющие поверхность сгорания от воздействия окислов серы [18]. Нейтрализующее действие аминных присадок также основано на химическом взаимодействии продуктов их распада с окислами серы с образованием агрессивных летучих соединений. При этом аммиак, образующийся из аминов и аммонийных солей в условиях работы двигателя, способствует снижению коррозии в результате как непосредственного нейтрализующего действия, так и замедления перехода двуокиси серы в более агрессивную трехокись. Противокоррозионное действие проявляют и некоторые фосфорные присадки к этилированным бензинам (модификаторы нагаров, см. главу 2) оно объясняется образованием легкоплавких фосфорных соединений, уносимых с выпускными газами и тем снижающих количество нагара и коррозию. [c.181]


    Органические соли меди, железа, кобальта в результате каталитического действия на окисление масел способствуют накоплению в них кислых, коррозионио Присутствие катализаторов снижает эффективность вносимых в масло ингибиторов окисления. В качестве гомогенных катализаторов жидкофазного окисления нефтепродуктов часто используют карбоксилаты металлов (стеараты, нафтенаты и др.) [102]. [c.77]

    Соли нафтеновых кислот также могут повышать растворимость оксикислот и асфальтенов в масле. Такой способностью обладают только кислые соли—кобальтовые, свинцовые. Положительное влияние нафтенатов кобальта и свинца подтверждается применением их в качестве моющих нрисадок. Так, моющее действие нафтената кобальта оценивается по ПЗВ в 1,0—1,5 балла (присадка накс). В то же время нафтенаты некоторых других металлов, например кальция и бария, моющим действием не обладают. [c.357]

    Из других нафтенатов следует отметить эффективно действующие двойные и тройные смеси нафтенатов металлов. Наряду с нафтенатом меди фунгицидными свойствами обладают и другие нафтенаты металлов. Нафтеновые кислоты, применяемые для изготовления нафтенатов, эффективно защищают хлопчатобумажные изделия от плесневения. Понятно, что их присутствие значительно повышает фунгицидную активность таких соединении, как нафтенат меди, где сам катион является активным фунгицидом . Поэтому большинство нафтенатов нельзя считать особенно эффективными, когда они применяются самостоятельно. Зато двойные и тройные смеси некоторых нафтенатов обладают большой фунгицидной силой [11]. [c.50]

    В табл. 8 и 9 показана степень плесневения хлопчатобумажного полотна, обработанного нафтенатами металлов или их двойными (табл. 8) или тройными (табл. 9) смесями с предварительным промыванием и испытанием по методу двухдневного закапывания в почву. При действии одного нафтената металла концентрация металла в ткани составляет 0,2% (кроме первой строки табл. 8, где она равна 0,1%). При действии двойной смеси концентрация [c.50]

    Соли нафтеновых кислот также могут повышать растворимость оксикислот и асфальтенов в масле, но такой способностью обладают только кислые соли — кобальтовые, свинцовые. Так, моющее действие нафтената кобальта оценивается по ПЗВ в 1,0—1,5 балла (присадка накс). В то же время нафтенаты некоторых других металлов, например кальция и бария, моющим действием не обладают. [c.559]

    Было изучено каталитическое действие большого числа нафтенатов металлов [126,127]. По механизму действия все катализаторы исследователь Ота [120] делит на три большие группы. [c.30]

    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]

    В литературе имеются некоторые данные об исследовании влияния пропарки катализатора на степень его отравления. На свежий катализатор наносили 0,2 вес.% нафтената железа-и пропаривали при 566 °С перегретым паром под давлением. Параллель-) но пропаривали свежий катализатор при тех же условиях, после чего на него обычным методом наносили 0,2 вес.% железа и затем испытывали его активность. Было установлено, что при пропарке существенная часть отложенных металлов поглощается катализатором поэтому они оказывают значительно меньшее дезактивирующее действие, чем в случае нанесения металлов после пропарки катализатора. Предотвращение отравления катализатора путем воздействия на него водяного пара изучалось в работе [205]. Полученные результаты (табл. 44) иллюстрируют существенное улучшение селективности при пропарке катализатора. [c.143]

    Таким образом, нафтенаты тяжелых металлов и некоторые другие вещества представляют собой самостоятельный класс моющих присадок, которые могут быть названы присадками растворяющего действия. [c.358]

    Было изучено действие нафтенатов хрома (III), железа (III), кобальта (II), свинца (II), марганца (II) и индия (III) на турбинное масло-22, загущенное ПМА, ПИБ и виниполом, в атмосфере азота, воздуха и кислорода при 150—170 °С [104]. Предварительно исследовали, происходит ли взаимодействие полимера с нафтенатами металлов, растворенными в масле, о чем судили по значениям диэлектрической проницаемости е и тангенса угла диэлектрических потерь tg6. Диэлектрическая проницаемость загущенного масла при введении в него нафтенатов металлов изменяется мало, в то время как tg6 увеличивается, особенно в случае нафтенатов кобальта и марганца. Ниже показано увеличение tg6 масла, загущенного 5% полимера, при добавлении 1% нафтената кобальта  [c.70]


    Последняя реакция ускоряется солями металлов переменной валентности (ацетаты или нафтенаты кобальта, марганца и др.), в чем и состоит традиционное объяснение их каталитического действия при окислении в жидкой фазе  [c.348]

    Нафтенаты некоторых двухвалентных металлов (меди, кобальта, марганца )тормозят деструкцию винипола в атмосфере кислорода. Предложенный Б. А. Долгоплоском механизм действия нафтенатов металлов был подтвержден на примере термодеструкции турбинного масла-22, загущенного 5% ПИБ, ПМА и винипола, в присутствии нафтената железа (П1) [104]. В процессе нагревания масла в атмосфере кислорода при 50 °С нафтенат железа (П1) способствует деструкции полимера только при наличии восстановителя — бензоина, который вызывает [c.71]

    Действие нафтенатов металлов. Многие виды бактерий, окисляющих химические загрязнения, отличаются большой требовательностью к нафтенатам марганца, никеля, хрома и других элементов [44]. Нафтенаты марганца, никеля, хрома и других элементов увеличивали активность дегидрогеназ, каталаз, протенназ, фосфатаз, аргиназ и ряда других ферментов, что способствовало интенсификации биохимической очистки [17, 42, 49], однако действие нафтенатов марганца в активных илах в большей степени сказывается на активности экзоферментов, чем на деятельности микроорганизмов. Марганец относится к структурным компонентам некоторых фосфатаз и аргиназ. Соединения марганца регулируют соотношение между Fe и Fe , окисляя соединения железа, восстановленные в ходе окислительных процессов [45]. Нафтенаты марганца оказывают также влияние на фиксацию азота соответ-ствуюш,ими микроорганизмами и метаболизм соединений азота в активном иле [42 ]. [c.83]

    КИСЛОТОЙ. Например, нитраты щелочных металлов могут давать нитриты или окислы этих металлов, которые реагируют с трехоки сью серы с образованием нейтральных или летучих продуктов [48]. По тому же механизму могут действовать карбонаты щелочных металлов. Нафтенаты металлов (нафтенат цинка) могут образовывать при сгорании соединения, предохраняющие поверхность металла от действия окислов серы [47]. [c.322]

    Были определены [20] продукты реакции 2,4,6-триалкилфенолов с гидроперекисями в бензольном растворе в присутствии нафтената кобальта. Среди продуктов реакции обнаружены соединения типа ROOIn и In — In, которые указывают на существование в реакции радикалов типа In (табл. 51). При распаде гидроперекиси трет.бутила [21] под действием ионов металлов переменной валентности в присутствии 2,6-ди-трет. бутил-4-метилфенола было выделено вещество [c.241]

    В присутствии катализаторов И. образуют димеры, тримеры и высокомолекулярные соединения. Димеризация И.— равновесный процесс, протекающий под действием пиридина, триэтиламина, алкил-и арилфосфинов и нек-рых оловоорганич. соединений. Образующиеся димеры — твердые высокоплавкие вещества. Тримеры И. (изоцианураты) образуются под действием ацетатов и бензоатов щелочных металлов, солей двухвалентного олова, нафтенатов металлов, систем третичный амин — окись алкилена. Димеры (I) и тримеры (II) имеют циклич. структуру  [c.413]

    Если в рассмотренных работах действие атомов металлов на полисилоксаны оценивалось с чисто химических позиций, то Грубер и др. [ИЗ, 125] считают, что введение небольших количеств неорганических добавок, содержащих гетероатомы бора, фосфора, титана, алюминия, ванадия, олова и др., в состав основной полимерной цени приводит к образованию надмолекулярных структур и соответственно упорядоченности отдельных участков полимерных цепей. Такие добавки неорганических веществ рассматривались как центры ориентации. Механизм действия добавок связывается с их способностью к образованию координационных и полярных связей между цепями. Упорядочение вторичной структуры полидиметилсилоксана приводило к повышению его термостойкости. Для термостабилизации полисилоксанов гетероатомы металлов вводили в виде различных соединений (ацетаты и каприлаты железа, нафтенаты свинца, цинка, кобальта, железа, марганца, нафтенаты и каприлаты индия и церия и т. д. [103), а также в виде мелкодисперсных порошков металлов [125]. [c.40]

    Как было указано выше, в качестве моющих и диспергирующих присадок применяются органические соединения различных классов. Так как разные присадки по эффективности действия отличаются друг от друга, то предполагается, что механизм их действия неодинаков. Например, моющее действие нафтенатов свинца и кобальта объясняют их высокой способностью растворять осадки251, влияние фенолятов металлов связывают со способностью нейтрализовать кислотные продукты окисления и образовывать вещества, действующие как антиокислители з . [c.90]

    В некоторых случаях битум в растворы не вводится, поскольку его в достаточном количестве содержат применяемые тяжелые нефти. В этих рецептурах используются нафтенаты натрия и кальция, мыла таллового масла с силикатом натрия и каустиком, кальциевые и алюминиевые соли смоляных кислот, играющие роль не только структурообразователей, но и понизителей фильтрации и эмульгаторов воды, попавшей в раствор. Наряду с обычными щелочными мылами, эффективны смеси их с мылами щелочноземельных или более тяжелых металлов. В ряд зарубежных рецептур вводится окись кальция, обладающая многофункциональным действием, смеси эмульгаторов, закодированных под фирменным названием инвермул , Е 2-мул , реагенты V или У , дюратон , дрилтрит , кен-экс и др. [c.379]

    По механизму действия все катализаторы Ота делит на три группы [132]. К первой группе относятся нафтенаты- натрия, магния, бария, двухвалентной ртути и алюминия. Они вызывают незначительное разложение гидроиероксидов и не препятствуют их накоплению. Окисление в присутствии этих катализаторов обычно прекращается на неглубоких стадиях прев раще-ния исходного углеводорода при максимальной скорости (мол.) в 1 ч. Ко второй группе отнесены нафтенаты свинца, серебра, цинка, марганца, никеля, трехвалентното железа, кобальта, хрома. Соли металлов второй группы интенсивно разлагают гидропероксиды с образованием свободных радикалов при этом максимальная скорость окисления достигает 3—4% (мол.) в 1 ч. Нафтенаты калия, ванадия и двухвалентной меди, отнесенные к третьей группе, вызывают интенсивное разложение гидропероксидов и ингибируют 0 кисление  [c.37]

    Сиккативы, приготов.шяемые на основе нафтенатов тяжелых металлов, отличаются высокой стойкостью к действию температуры и окислителей. Хорошо совмещаясь почти со всеми лаками, они способствуют образованию легко полирующейся поверхности. [c.261]

    В XIX в. было принято считать, что парафиновые углеводороды являются примерами нереакционноспособных соединений, что и послужило причиной их названия—парафины (parum aff inis—почти бездеятельный). Однако проведенные исследования показали обратное. Пресловутую химическую инертность парафинов еще в 1870 г. развенчал Кельбер [38], показавший, что воздух при 150—160° довольно легко окисляет парафины в соответствующие карбоновые кислоты. Далее было установлено, что карбонаты или гидроокиси металлов I н II трупа периодической системы заметно ускоряют окисление углеводородов, и добавки 1—2% стеарата магния способствуют образованию до 80% различных жирных карбоновых кислот. В продуктах реакции были установлены все кислоты от уксусной до стеариновой. Благоприятное действие при окислении углеводородов оказывают добавки небольших количеств воды, I—2% стеарата Zn или Мп, олеата Со или Мп, нафтенатов разных металлов и т. д. [c.218]

    К присадкам (П.) 1 й группы относятся антидетонаторы (напр., тетраметил- и тетраэтилсвинец) и инициирующие П. (напр., изопропилнитрат), повышающие соотв. октановое и цетановое числа П., снижающие склонность бензинов к нагарообразованию, вапр. триметилфосфат противодым-ные П. к дизельным топливам, вапр. метиланилин, ацетонитрил. Во 2-ю группу П. входят антиокислители (напр., производные фенола и в-фенилендиамина) деактиваторы металлов (напр., J,N -ди aлицилидeнэтилeнднaмин), подавляющие их каталитич. действие на окисление топлив диспергенты (напр., нафтенаты или сульфонаты Ва и Са), замедляющие образование нерастворимых продуктов окисления. К П. 3-й группы относятся противоизносные П. (амины, фенолы, нафтолы и др.), улучшающие смазывающие св-ва топлив антикоррозионные (напр., масляный р-р сульфоната Са и окисленного петролатума), снижающие коррозионное воздействие топлив на металлы и электрохим. коррозию метадлов в присут. воды. В 4-ю группу входят депрессорные П. (напр., полиметакрйлаты, сополимеры этилена с винилацетатом мол. м. 1800—5400), снижающие т-ру застывания котельных и дизельных топлив П., препятствующие выделению кристаллов льда в реактивном топливе, напр, этил- и метилцеллозольвы, Примен. [c.478]

    СИККАТИВЫ, катализаторы окислит, полимеризации ( высыхания ) ненасьш , растит, масел ускоряют пленкообразование маслосодержащих лакокрасочных материалов (олиф, масляных и алкидных лаков и др.). Наиб, распрост раненные С.— соли (мыла) металлов со степенью окисл >2 и одноосновных орг. к-т, преим. нафтенаты, линолеаты таллаты, резинаты, октоаты. Не раств. в воде, раств. в рас тит. маслах и орг. р-рителях. По механизму действия под разделяются на первичные, или истинные (напр., соли Со Мп, РЬ, Ре), и вспомогательные, или промоторы (соли Са 2п), к-рые самостоят. каталитич. действия не проявляют но активируют первичные С. В пром-сти использ. обычно комбиниров. С., содержащие ионы неск. металлов, или смеси различных С. Содержание ионов металла в лакокрасочных материалах естеств. сушки составляет 0,01—0,5% (от массы масла), в материалах горячей сушки — в 3—5 раз меньше. Получ. взаимод. ацетата, сульфата или др. соли металла с Ма-солью орг. к-ты в водном р-ре (осажденные [c.524]

    На окисление масел в двигателях существенно влияют металлы, из которых изготовлены детали двигателя (сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хрюм и №р. ). Некоторые из этих металлов ускоряют окисление масел, другие действуют слабо. Интенсивными катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, ускоряя п зоцессы окисления. Так, каталитически активны соли нафтеновых кислот, особенно нафтенаты свинца и меди. Для устранения каталитического действия металлов в масло вводят специальные добавки, которые образуют на поверхности металла защитные пленки, препятствующие взаимодействию продуктов окисления масел с поверхностью металла. На окисление масел значительное влияние оказывает и температура при ее повьпиении дальнейшее превращение первичных продуктов окисления ускоряется. [c.30]

    Соединения свинца при введении в редукторные масла способствуют повышению маслянистости или вступают в реакцию с другими компонентами масла, образуя противосвароч-ные пленки. Соединения других металлов действуют иначе. Например, диалкилдитиофосфат цинка может образовать фосфор-или серусодержащие пленки -.в условиях сверхвысоких давлений. Однако свинцовые мыла и осерненные жиры являются эмульгаторами 2lJ, что нежелательно при их применении в условиях возможного обводнения. В то же время в присутствии воды эти присадки предотвращают коррозию стали. Редукторные масла, содержащие 5-25% нафтената свинца и 2% крезола, не образуют стойких водомасляных эмульсий 21]. [c.46]

    Еще первые работы, посвященные выяснению химизма образования отложений и нагаров в двигателе и механизма моющего действия [91], привели к выводу, что эффективность карбоксллатов и фенолятов металлов обусловлена взаимодействием их с веществами, образующими отложения кислотного характера. Эти исследования показали, что отложения в канавках поршневых колец в дизелях и бензиновых двигателях, работающих в высокотемпературном режиме, обладают сильнокислотным характером авторы работы предположили, что такие отложения представляют собой продукты конденсации оксикислот, образующихся при окислении смазочного масла. Экспериментальные данные указывали на то, что такая конденсация частично происходит в результате полимеризации оксикислот. Было обнаружено, что оксикислоты способны взаимодействовать с некоторыми солями более слабых кислот, например нафтенатами алюминия или магния, или с дихлорстеаратом кальция, образуя соли. оксикислот, которые не вступают в реакции, ведущие к образованию нагара и лака в двигателе. [c.27]

    Соли металлов переменной валентности (например, нафтенат и ацетат кобальта) ускоряют окисление тетралина [69, 76]. Механизм катализирующего действия солей кобальта заключается во взаимодействии катализатора с гидроперекисью [69] (см. гл. VI)  [c.343]

    Обратимые системы с участием перекисей или гидроперекисей, солей металлов переменной валентности, растворимых в углеводородах, и органич. восстановителей м. б. применены для И. п. стирола, метилметакрилата и др. мономеров в углеводородных средах, а также для инициирования структурирования полимеров и окисления ненасыщенпых соединений. Отсутствие воды с1сазывается прежде всего в замедлении восстановления Ме"+1 в Ме , в связи с чем указанные процессы в этих случаях эффективно протекают, как правило, при более высоких темп-рах (20—50°С). Общая скорость процесса зависит от восстанавливающей способности восстановителя и концентрации соли металла. Механизм действия систем типа перекись бензоила — бензоин — нафтенат железа подобен механизму действия обычных обратимых систем (см. выше). Окисление Fe + в Ре + гидроперекисью и перекисью бензоила в углеводородных средах протекает практически мгновенно даже при —70°С. Восстановление Fe + в Fe + в случае бензоина — бимолекулярная реакция с энергией активации 84 кдж/моль (20 ккал/моль). Кажущаяся энергия активации разложения гидроперекиси в системе ROOH [c.424]

    Окислительно-восстановительные системы, генерирующие свободные радикалы, нашли в настоящее время широкое применение для получения различных полимеров полимеризацией в водных средах и для модификации полимеров методом прививки. В случае использования органических солей металлов пёременной валентности (например, нафтенатов) возможно применение таких инициирующих систем и в углеводородных средах. Вследствие низкой энергии активации образования радикалов окислительно-восстановительные инициирующие системы могут применяться в широких температурных интервалах в области понижецных температур, Классификация этих систем, механизм и кинетические особенности их действия рассмотрены в работах [29, 53  [c.52]

    Исследования в области активированного гомогенного катализа в присутствии солей металлов, промотированных М-гетеро-циклами, появились в последние годы. Первой работой в этом направлении стало изучение закономерностей каталитического окисления циклогексилбензола в присутствии нафтенатов щелочноземельных металлоЁ, активированных 1,Ш"фенантролином и а,а-дипиридилом [ 3]. Окисление углеводорода, катализированное вышеуказанной каталитической системой, сопровождается ускорением реакций окисления и заметным возрастанием селективности процесса по 1-фенилциклогексилгидропероксиду. Позже на примере окисления кумола в присутствии нафтенатов цинка и кадмия, ж-диизопропилбензола в присутствии нафтёна-тоБ щелочноземельных металлов [4], промотированных о-фе-нантролином и другими Н-гетероциклами, было показано увеличение скорости и селективности окисления алкилароматических углеводородов. Заметное увеличение скорости и селективности реакции окисления углеводорода в гидропероксид связано с возрастанием доли радикального распада гидропероксида под действием катализатора. Константа скорости распада гидропероксида в присутствии фенантролиновых комплексов с соединениями цинка не превышает 10 с при 100 °С, [c.26]


Смотреть страницы где упоминается термин Действие нафтенатов металлов: [c.337]    [c.14]    [c.144]    [c.478]    [c.524]    [c.27]    [c.242]    [c.329]    [c.22]   
Смотреть главы в:

Биохимическая очистка сточных вод органических производств -> Действие нафтенатов металлов




ПОИСК







© 2025 chem21.info Реклама на сайте