Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клубка конформация область

    В области 1 полимер находится в спиральной конформации область 2 соответствует переходу спираль — клубок в области 3 полимер находится в форме беспорядочного клубка. [c.301]

    Складчатая конформация типична для кристаллических областей статистический клубок типичен для аморфных полимеров, находящихся в жидком, высокоэластическом (каучукоподобном) или твердом (жесткие клубки) состоянии. [c.39]


    Изменения конформации полипептидной цепи (а-спираль, /3-структура, статистический клубок) могут быть также определены с помощью инфракрасной спектроскопии. Характерные полосы амид I и амид II изменяют положение максимума в зависимости от конформации. Измерение дихроизма в инфракрасной области с помощью плоскополяризованного излучения дает возможность однозначно различить а-спираль и /3-структуру. [c.385]

    Кооперативный характер перехода спираль — клубок еще обусловлен тем, что устойчивость большой однородной спирали с упорядоченной системой водородных связей выше и внутренняя энергия меньше, чем у нескольких более мелких спиральных областей. Кроме того, следует учесть, что обе конформации выгодны. В случае а-спирали это связано с энергетическим фактором (наличие водородных связей), а у статистического клубка — с энтропийным (появление дополнительных степеней свободы). Вследствие стабильности спиральной конформации она может сохраниться в растворе при условии, что растворение не сопровождается разрушением внутримолекулярных водородных связей. [c.580]

    Кажущееся противоречие между зернистым строением и результатами нейтронного рассеяния в аморфных полимерах устраняется [86] при учете кинетического, флуктуационного характера областей порядка, стабильность которых намного выще, чем в случае низкомолекулярных жидкостей [87]. В этом случае мгновенная картина структуры расплава полимера будет соответствовать реализации лишь одной из множества возможных складчатых структур. Однако при большом времени наблюдения происходит усреднение различных конформаций молекулы, и ее поведение представляется подобным поведению невозмущенного гауссового клубка. Эти упрощенные, схематические представления качественно согласуются с результатами работы [88], в которой показано, что мгновенная форма статистического клубка является в высокой степени асимметричной, тогда как при длительно М наблюдении клубок проявляет сферическую симметрию. В этой связи представляют интерес данные Фишера [89], который показал, что гауссово распределение сегментов в аморфном полимере справедливо только в областях с линейным размером больше 2,5 нм. [c.49]

    Как следствие гребнеобразного строения наблюдается еще одна характерная особенность конформации молекулы привитого сополимера — высокая плотность распределения сегментов в области объема, смежной с ее основной цепью. Это приводит к осуществлению редкой молекулярной структуры цепной молекулы, имеющей большую равновесную жесткость и в то же время образующей статистический клубок, практически не протекаемый растворителем. Последнее свойство при моделировании молекулы червеобразной цепью диаметром й выражается в большой величине ее диаметра. [c.101]


    Рассматривая поведение полипептидной цепи в области перехода спираль — клубок и в особенности размеры макромолекулы в интервале перехода, нельзя ограничиваться учетом взаимодействия только ближайших мономерных единиц. В клубкообразной цепи (особенно заряженной) большую роль играют также взаимодействия дальнего порядка между далекими друг от друга в среднем мономерными единицами, случайно сблизившимися при тепловом движении частей цепи. Эти взаимодействия, роль которых возрастает с увеличением доли мономерных единиц в клубкообразных конформациях и средних размеров клубкообразных участков, сдвигают область перехода к более высоким температурам и расширяют его интервал, как это было недавно показано О. Б. Птицыным [43], [c.326]

    Возвращаясь к полипептидным цепям, отметим, что поскольку для них электростатические взаимодействия близко расположенных заряженных групп различаются для спиральной и клубкообразной конформаций, то кривые титрования последних также должны различаться. В частности, из приведенных выше оценок расстояний между близкими заряженными группами в спиральной и клубкообразной цепях следует, что при данном значении pH спиральная макромолекула должна быть заряжена в меньшей степени, чем клубкообразная. Поэтому, очевидно, что в области перехода спираль—клубок, инициируемого изменением pH раствора, степень ионизации макромолекулы должна сравнительно резко возрастать. Связь между степенью ионизации молекулы, претерпевающей кон-формационный переход, и степенью ионизации двух предельных конформаций может быть легко вычислена для случая абсолютно кооперативной системы. Из формул (10.11), [c.339]

    Переходы между различными конформациями в молекулах биополимеров, в частности переходы спираль—клубок, осуществляются обычно в узких областях изменения температуры, состава растворителя или pH раствора. Физическая основа таких переходов заключается в том, что состояние макромолекулы, в котором имеется большое число контактов между мономерными единицами, обычно энергетически более выгодно, в то время как состояние свободной макромолекулы более выгодно энтропийно из-за ее гибкости. Поэтому свободные энергии этих двух состояний различным образом меняются при изменении температуры, состава растворителя (например, если его молекулы способны к образованию водородных связей с макромолекулами, или если меняется [c.19]

    Узость интервала конформационного перехода обусловлена его кооперативным характером, выражающимся в том, что перестройка конформации в отдельной мономерной единице не приводит к выигрышу свободной энергии, для которого необходимо одновременное изменение конформаций большой группы мономерных единиц. В частности, для перехода спираль—клубок кооперативность связана с дополнительной энергией на стыках между спиральными и клубкообразными участками, обусловленной для полипептидов в конформации а-спирали необходимостью разорвать три внутримолекулярные водородные связи, чтобы первая мономерная единица в середине цепи приобрела гибкость. Поэтому спиральные и клубкообразные участки в молекулах в области перехода спираль—клубок содержат десятки последовательных мономерных единиц. В то же время переход спираль — клубок в молекулах высокой степени полимеризации не происходит по принципу все или ничего , в каждой молекуле сосуществуют спиральные и клубкообразные области. [c.20]

    К областям применения ЯМР-спектроскопии высокого разрешения для характеристики полимеров относятся изучение конфигурации полимерных цепей (форма цепей полимера, образованная основными валентными связями) исследование конформации полимерных цепей (форма цепей полимера, обусловленная вращением вокруг основных валентных связей) анализ распределения последовательностей и тактичности в полимерах и сополимерах установление разницы между полимерными смесями, блок-сополимерами, чередующимися сополимерами и статистическими сополимерами исследование переходов спираль — клубок изучение молекулярных взаимодействий в полимерных растворах, диффузии в полимерных пленках, совместимости полимеров и полимерных смесей исследование процессов сшивания изучение механизма роста цепи при винильной полимеризации. [c.339]

    Основные суждения о кинетической гибкости молекул полимеров, а также об их размерах и форме в растворе можно получить, изучая зависимость электрооптических характеристик макромолекул от молекулярной массы М. Исследование ЭДЛ в ряду молекулярных масс [50—57] обнаружило сильную зависимость области дисперсии (а следовательно, и времен релаксации) эффекта Керра от М (см. рис. 3). Эту зависимость можно понять, лишь допустив, что основную роль в ЭДЛ раствора играет механизм поляризации, связанный с вращением макромолекулы как целого. Характер зависимости г от Л1 можно представить в виде х=ЬМ", где Ь — постоянная, а л с возрастанием М изменяется от 2,7 (что соответствует конформации жесткой палочки) до 1,5 (не-протекаемый гауссов клубок) (рис. 4) [10]. [c.39]


    Макромолекулы желатины, находящиеся в водном растворе, претерпевают в области температур 35—40°С обратимый конформационный переход клубок — спираль. В основе этого перехода лежит следующее обстоятельство. Из-за наличия внутримолекулярных водородных связей между карбонильным кислородом и амидным водородом звеньев полипептидной цепи энергетически предпочтительной конформацией является спираль, обеспечивающая сближение взаимодействующих звеньев (через каждые три звена). Однако благодаря гибкости макромолекулы энтропийно выгодно состояние статистического клубка. [c.191]

    Применение последнего позволяет работать с очень разбавленными (порядка 10 М) растворами полипептида, избегая межмоле-кулярной ассоциации, и фиксировать не только переходы статистический клубок —а-спираль, но и следить за содержанием звеньев, существующих в р-форме, если таковые имеются. Известно, что в отсутствие поверхностно-активных ионов поли- -лизин в водном растворе при pH < 9,0 принимает конформации положительно заряженных статистических клубков. В интервале pH 9,0—9,8 происходит депротонирование аминогрупп и кооперативный конформационный переход статистический клубок а-спираль. При pH > > 10 макромолекулы существуют в а-спиральной конформации. Добавление додецилсульфата натрия совершенно изменяет картину. Во всем интервале pH < 11,6 оно приводит к возникновению компактных областей внутримолекулярной Р-структуры с антипарал-лельной ориентацией цепей. Таким образом, гидрофобные скрепки из противоиопов навязывают макромолекулам участки упорядоченной структуры, которая для свободных полипептидов в водных растворах при нормальной температуре вообще не характерна. Равновесное содержание Р-формы определяется мольным соотношением додецилсульфата и поли- -лизина (п) и величиной pH. На рис. 4 представлены зависимости содержания Р-формы (в %) [c.290]

    Уравнение (27) описывает изменение К с увеличением молекулярного веса и с соответствующим превращением конформации молекулы из прямой палочки в гауссов клубок. Первый член (27) представляет долю ДЛЭ, вносимую продольной составляющей дипольного момента мономерного звена, второй соответствует его нормальной составляющей. Зависимости KIK оо, 6=0 ОТ Представ-лены кривыми на рис. 19 для различных углов б. Кривые отличаются не только предельными значениями (пропорциональными соз б), но также и формой. Если диполь цо перпендикулярен цепи (5 = 90°), то эффект Керра противоположен по знаку Аа при всех значениях х, а при возрастании х убывает по абсолютной величине до нуля. При всех значениях б роль нормальной составляющей диполя ло sin б возрастает с уменьшением х, вследствие чего при 6>55° ДЛЭ может менять знак в области малых х. [c.87]

    Легче интерпретировать дихроизм п—я -переходов карбонильных соединений. В данном случае имеется набор правил, известных как правила октанта, которые позволяют предсказывать знак и величину КД простых соединений [47]. Разработан также теоретический подход к анализу КД-спектров и спектров поглощения белков в высокоэнергетической УФ-обла-сти. В пределах регулярной р-струк-туры, а-спирали и кристаллических областей электронные переходы соседствующих друг с другом амидных групп могут быть связаны, в результате чего имеет место делокализация возбуждения. Такая делокализация (экситон) приводит к расщеплению (давыдовскому расщеплению) на два перехода с различающимися энергиями и направлением поляризации [7, 44]. Так, полоса поглощения амидной группы с тах = 52 600 см- в случае а-спирали расщепляется на две компоненты с Vmax=48 500 и 52 600 см . Кроме того, низкоэнергетические я—п - и п—я -переходы весьма близки по энергии, что может приводить к формированию состояния, представляющего смесь двух указанных состояний с появлением вращательной силы в я—я -полосе, знак которой противоположен знаку вращательной силы в п—я -полосе (см. работу [44]). И знак, и интенсивность КД-полос зависят от конформации соединения, что позволяет четко различать а-спирали, -структуры и статистический клубок. В водных растворах измерения проводят при длинах волн, простирающихся вплоть до вакуумного ультрафиолета, т. е. до волновых чисел - бООООсм [48]. [c.26]

    Полимерный клубок, возникающий вследствие тепловых фл ктуаций — поворотов вокруг единичных связей, является рыхлым образованием. На рис. 3.10 показана полученная в модель-. ном эксперименте на ЭВМ типичная конформация клубка из 626 звеньев (Балабаев). Клубок как флуктуирующая система характеризуется корреляцией плотности, т. е. связью изменения плотности в одной области пространства, занятой клубком, с изменением плотности в другой его области. Оказывается, что радиус корреляции того же порядка, что и размер клубка. Причиной этого является именно линейная память цепи. Тем самым плотность клубка не является его термодинамической характеристикой, она не имеет достоверного постоянного значения. Клубок флуктуирует и его флуктуации макроскопичны. Имеет смысл лищь средняя плотность клубка  [c.76]

    Такие агрегаты и ранее рассматривались как микрогели и предполагалось, что стабилизированы они так же, как гели желатины. Для выяснения особенностей перехода спираль — клубок в гелеобразующих системах желатины были проведены исследования при концентрациях желатины больше 2 г/100 мл, т. е. в условиях гелеобразования [92]. На рис. 2 представлены кривые зависимости температурных коэффициентов удельного оптического вращения растворов и гелей желатины от температуры. Видно, что при 36° С и выше температурный коэффициент удельного оптического вращения равен нулю. В этой области существуют лишь молекулы желатины в конформации статистического клубка. При охлан дении до 20° скорость образования спиралей увеличивается, при 17—20° С температурный коэффициент удельного оптического вращения наибольший и постоянный, а затем он уменьшается. По-видимому, это связано с уменьшением подвижности молекул и их сегментов при снижении температуры, что затрудняет образование спиральных конформаций и с тем, что наибольшая доля молекул желатины из конформаций статистического клубка уже перешла в спиральную конформацию. [c.68]

    Для выяснения влияния заряда молекул желатины на температурный коэффициент удельного оптического вращения гелей изучали удельное оптическое вращение гелей (с = 5 г/100 мл) при разных pH и температурах (рис. 4). В общем виде кривые для кислотной и щелочной областей pH повторяют ход зависимости, характерной для изоэлектрического состояния. Однако температуры полного перехода спираль — клубок, при котором температурный коэффициент удельного оптического вращения равен нулю, резко отличаются при pH 4,9 — 36° нри pH 9,0 — 29° при pH 3,0 — 25° С (т. е. в кислотной и щелочной областях полный коиформационный переход осуществляется при температурах на 7—11° ниже, чем в изоэлектрическом состоянии). Это объясняется тем, что вследствие одноименного заряда на макромолекулах желатины [93] спиральные конформации в щелочной и кислой средах менее устойчивы. [c.70]

    Индивидуальная макромолекула, обладающая вторичной структурой, представляет собой как бы одномерный кристалл. Подобно обычному кристаллу, такая одномерная упорядоченная система способна при изменении температуры или состава растворителя претерпевать резкий переход, сходный с фазовым. т. е. плавиться , переходя к структуре свернутого клубка, типичной для обычных макромолекул. Переходы спираль— клубок были открыты в 1954 г. Доти. Холтцером, Брэдбури и Блаутом в молекулах синтетического полипептида поли- [--бензил- -глутамата, принимающих спиральную или клубкообразную конформацию в зависимости от состава растворителя, и затем подверглись детальному экспериментальному и теоретическому исследованию. Наиболее важные экспериментальные работы в этой области выполнены Доти и его школой. [c.292]

    Таким образом, даже если выполнено обязательное термодинамическое условие х — слева от бинодали), глобулы, т. е. молекулярные структуры, характерные для области гетерофазных флуктуаций, оказываются достаточно стабильными в той области, где разделения на фазы не может быть, а значит не может быть гетерофазных флуктуаций. Объяснение этого кажущегося парадокса состоит в том, что выше бинодали сами глобулы представляют собой метастабильные системы для выигрыша свободной энергии надо сначала затратить тепловую энергию, которая может быть недостаточна при заданной температуре перегрева. Преодоление потенциального барьера перехода глобула — клубок приведет к достижению равновесного состояния. Однако такой скачкообразный переход — не единственный путь возвращения к равновесию. Левый участок бинодали для твердой фазы является спинодалью. Выше этой ветви глобулы термодинамически абсолютно неустойчивы (по определению снинодали), но время, требуемое на реализацию этой неустойчивости, т. е. время релаксации конформации клубка, может быть очень велико. Элементарный расчет показывает, что энергия активации релаксационного процесса в точности совпадает с высотой потенциального барьера, препятствующего переходу из метастабильного в стабильное состояние. Таким образом, обе физические трактовки эквивалентны, но пока нам удобнее будет пользоваться релаксационной. Все дело в геометрическом размере флуктуаций или областей корреляции У полимеров они неизбежно больше, чем у простых веществ, так как [c.106]

    Совершенно иные конформационные эффекты наблюдаются при взаимодействии поли-/у-глутамата натрия с другими полиаминами — полиэтиленимином и пoли-N,N-димeтилaминoэтилмeтaкpилaтoм. Экспериментальные данные приведены на рис. 10. Из этих данных видно, что в этом случае образование полиэлектролитных комплексов не сопровождается конформационным переходом типа клубок — а-спираль кривые дисперсии оптического враш ения для поли- -глутамата натрия в комплексах соответствуют конформации статистического клубка. Только при разрушении полиэлектролитных комплексов, которое происходит в кислых растворах при pH = = 3—3,5, свободные участки цепей полипептида приобретают конформацию а-спирали и конформационный переход полиглутаминовой кислоты в этих комплексах смеш ен примерно на 3 единицы pH в кислую область по сравнению с переходом свободной по.пи-1<-глу-таминовой кислоты в водном растворе. Таким образом, образование полиэлектролитного комплекса может приводить к стабилизации конформации, отличной от а-спирали. [c.28]

    В настоящее время метод измерения оптического вращения широко используется при изучении переходов спираль — клубок в полинуклеотидах и нуклеиновых кислотах, вызванных изменением температуры [107, ПО] или состава смешанного растворителя [112—114]. Рис. 62а и 626 иллюстрируют изменения удельного оптического вращения [и1в ДНК тимуса теленка и сополимера адениловой и уридиловой кислот [поли-(А + У) 1 при изменении температуры. На этих рисунках для сравнения приведены гиперхромные эффекты при денатурации измерение этих эффектов является одним из наиболее чувствительных методов обнаружения конформационного перехода. Характер кривой зависимости а]ц от температуры для ДНК имеет две особенности, отличающие эту кривую от кривой, полученной для синтетических полинуклеотидов. Наличие на кривой впадины (соответствующей увеличению декстровращения) в области температур 30—80° свидетельствует о тонких изменениях конформации молекулы ДНК- Другой вопрос заключается в величине декстровращения ДНК, которая намного меньше, чем соответствующая величина для двутяжной спирали поли-(А Ь У). Причина этого до сих пор не выяснена. [c.119]

    После выхода в свет монографии Флори Prin iples of Polymer hemistry , в которой были сформулированы основные полон ения теории разбавленных растворов полимеров, появилось много книг с детализацией этой теории. Предполагали, что исследования в области разбавленных растворов полимеров близки к завершению. Однако положение оказалось иным. Появление стереорегулярных полимеров значительно расширило всю область растворов полимеров и стимулировало детальное рассмотрение конформаций цепных молекул. Вторым важным открытием, обогатившим учение о растворах, явилось открытие переходов спираль — клубок в полиэлектролитах и биологических полимерах и установление факта, что эти переходы идентичны внутримолекулярной кристаллизации сложной макромолекулы. Книга Г. Моравца выделяется из имеющейся литературы по растворам полимеров прежде всего подробным рассмотрением растворов стереорегулярных полимеров, биополимеров и полиэлектролитов. [c.5]


Смотреть страницы где упоминается термин Клубка конформация область: [c.417]    [c.208]    [c.314]    [c.316]    [c.316]    [c.320]    [c.64]    [c.628]    [c.32]    [c.184]    [c.26]    [c.82]    [c.32]    [c.184]    [c.360]    [c.125]    [c.279]    [c.314]    [c.316]    [c.316]    [c.320]    [c.55]   
Принципы структурной организации белков (1982) -- [ c.295 ]

Принципы структурной организации белков (1982) -- [ c.295 ]




ПОИСК







© 2025 chem21.info Реклама на сайте