Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы пластичность

    Консистентные смазки — это пластичные коллоидные системы, существенно отличающиеся по своей природе и свойствам от жидких масел. Их получают путем введения в жидкие масла загустителей и других компонентов, придающих им специальные свойства (присадки, наполнители, стабилизаторы и т. п.). [c.185]

    Реологические свойства пластичных смазок. Пластичные смазки по определению являются пластичными аномально вязкими телами. Их реологические свойства значительно сложнее, чем у жидких масел (жидкостей), что определяет коренные различия условий оптимального применения масел и смазок [284]. Пластичные смазки представляют собой дисперсные системы класса псевдогелей. Частицы загустителя (мыла, парафин, церезин, пигменты), имеющие коллоидные размеры, образуют структурный каркас смазки, подобный губке. Поры каркаса удерживают дисперсионную среду — жидкое масло.-Наличие жесткого структурного каркаса наделяет смазки свойствами твердого тела. [c.271]


    Пластичные смазки представляют собой коллоидные системы, отличающиеся значительной концентрадией и высокой степенью структурирования твердой фазы. Структура смазок изучается при помощи электронного микроскопа, позволяющего получать увеличение более 100 тыс. раз при разрешающей способности до 4 А. Исследования смазок с использованием методов электронной микроскопии позволили установить, что дисперсная фаза большинства мыльных смазок образована лентовидными или игольчатыми частицами (волокнами) анизометричной формы. В одном или двух измерениях размеры этих частиц коллоидные — менее 1 мкм. [c.356]

    Закон Ньютона обычно нарушается при течении коллоидных растворов с удлиненными частицами дисперсной фазы, способными деформироваться в поле напряжений и структурированных систем. Такие коллоидные системы обладают определенными механическими свойствами - пластичностью, упругостью, прочностью и вязкостью. Эти свойства в большинстве случаев связаны с образованием структуры в жидкости, и поэтому их часто называют структурно -механическими или реологическими свойствами. [c.11]

    Пластичные смазки, являясь коллоидными системами, могут проявлять механические свойства, характерные как для твердых тел, так и для жидкостей. Так, при сравнительно небольших нагрузках смазки обладают способностью сохранять свою форму. Под влиянием собственной массы смазки не стекают с вертикальных поверхностей и не выбрасываются из незакрытых узлов трения под действием центробежной силы. Это весьма существенное эксплуатационное качество смазок, присущее твердым телам, оценивается пределом прочности т. [c.238]

    По консистенции смазки разделяют на полужидкие, пластичные и твердые. Пластичные и полужидкие смазки представляют собой коллоидные системы, состоящие из дисперсионной среды, дисперсной фазы, а также присадок и добавок. Твердые смазки до отвердения являются суспензиями, дисперсионной средой которых служит смола или другое связующее вещестю и растворитель, а загустителем — дисульфид молибдена, графит, технический углерод и т.п. После отвердения [c.313]

    Наибольшее практическое значение имеют структурно-механические, или реологические, свойства буровых жидкостей. Специфика коллоидно-дисперсных и микрогетерогенных систем предопределяет их промежуточное положение между истинно твердыми и истинно жидкими телами. Они обладают вязкостью, пластичностью, упругостью и прочностью. Важнейшей особенностью коллоидных систем является аномалия вязкости. Их вязкость не является постоянной величиной, а зависит от градиента скорости. Для многих коллоидных систем, образующих пространственные структуры, характерно наличие предела текучести, т. е. напряжения сдвига, ниже которого движение не происходит. Аномалия обусловлена наличием в коллоидных системах структурных сеток, образуемых дисперсной фазой. [c.5]


    Объемно-механические свойства. Эксплуатационные свойства антифрикционных смазок в сильной мере зависят от так называемых объемно-механических характеристик. Пластичные смазки, являясь коллоидными системами, могут проявлять механические свойства, характерные как для твердых тел, так и для жидкостей. Так, при сравнительно небольших нагрузках смазки обладают способностью сохранять свою форму. Под действием собственного веса смазки не стекают с вертикальных поверхностей и не выбрасываются из незакрытых узлов трения под действием центробежной силы. Это весьма существенное эксплуатационное качество смазок, присущее твердым телам, оценивается пределом прочности. [c.132]

    Новая пластичная смазка содержит дополнительно нефтяную полярную фракцию ПФ-1 и эффективно работает в широком диапазоне температур. В рецептуре смазки стеарат лития выполняет роль загустителя минерального масла, дифениламин является антиокислительной присадкой, дисульфид молибдена — модификатор трения, нефтяная полярная фракция модифицирует коллоидную структуру пластичной смазки, повышая одновременно функциональное действие каждого компонента системы. [c.280]

    В отличие от масел пластичные смазки (в дальнейшем смазки) являются, как правило, сложной коллоидной системой, обладающей специфическими структурно-механическими свойствами и состоящей из дисперсионной среды и дисперсной фазы—загустителя. В качестве загустителя используют твердые мыла индивидуальных жирных кислот, их комплексы или смеси, твердые углеводороды, силикагель, полимерные материалы, пигменты, глины и пр. Дисперсионной (жидкой) средой служат в основном минеральные масла различного назначения и группового состава, а также синтетические жидкости или сложные эфиры. [c.114]

    Пластичные (консистентные) смазки представляют собой пластические коллоидные системы. Это особый класс смазочных материалов, приготавливаемых путем введения в смазочные масла специальных, главным образом твердых, загустителей, ограничивающих их текучесть. Большинство консистентных смазок в широком интервале температур ведет себя как твердые упругие тела. Они приобретают способность необратимо деформироваться (течь), если приложенная сила больше предела текучести смазки. С повышением температуры предел тек ести консистентных смазок понижается и при некоторой, определенной для каждой смазки температуре становится равным нулю (смазка течет). Вторым характерным признаком консистентных смазок, отличающим их от смазочных масел, является аномальное внутреннее трение, в отличие от нормальных жидкостей, зависящее от условий течения (структурная вязкость). Эти свойства консистентных смазок связаны с их коллоидной природой и структурой. [c.146]

    Консистентные, или пластичные, смазки — мазеобразные продукты, не обладающие текучестью при обычных температурах. Консистентные смазки представляют собой особый класс смазочных материалов, приготовляемых путем введения в смазочные масла специальных, главным образом твердых мелкодисперсных загустителей, ограничивающих текучесть масел. Смазки — это коллоидные системы, имеющие пространственную структуру, образованную частицами загустителя. Жидкая фаза удерживается [c.406]

    Хотя температура каплепадения характеризует эксплуатационные возможности испытуемой смазки для работы при повышенных температурах и отражает в какой-то мере ее состав и, главное, природу загустителя, все же это условная эмпирическая величина, которую нельзя отождествлять с температурой плавления. Иначе говоря, падение первой капли не всегда означает, что при данной температуре испытуемая смазка потеряла пластичность и начала течь. Иногда это происходит благодаря плохой термической стабильности смазки. Смазка еще сохраняет какой-то предел прочности, но выделяет некоторое количество масла. Кроме того, поскольку смазки — не индивидуальные вещества, а сложные коллоидные системы, переход их в текучее (жидкое) состояние происходит в определенном температурном интервале, иногда довольно щироком. [c.159]

    Консистентные смазки представляют собой смазочные материалы, специальным образом загущенные для того, чтобы обеспечить смазку, консервацию и уплотнение тех узлов трения и деталей двигателя, для которых обычная жидкая смазка не может быть применена из-за особых условий работы и конструкции узла трения. Консистентные смазки—-это пластичные коллоидные системы, существенно отличающиеся по своей природе и свойствам от жидких масел. Консистентные смазки получают путем введения в жидкие масла загустителей и других компонентов, придающих им специальные свойства (присадки наполнители, стабилизаторы и т. п.). [c.210]

    Коллоидные и микрогетерогенные системы с жидкой и твердой дисперсионной средой, как и все другие конденсированные системы, обладают определенными механическими свойствами — вязкостью,, во многих случаях пластичностью, упругостью и прочностью. Эти свойства связаны со структурой подобных систем, поэтому их часто называют структурно-механическими свойствами. Эти свойства называют еще реологическими, так как учение [c.313]


    По химическому составу битумы представляют собой смесь углеводородов (в основном гибридного строения) и асфальтосмолистых веществ, в состав которых, кроме углерода и водорода, входят кислород, сера, азот и незначительные количества металлов V, N1, Ре, Со и др. Битумы характеризуются групповым составом, процентным содержанием в них химически однородных фракций— масел, смол, асфальтенов, карбенов и карбоидов. Сочетание этих веществ образуют коллоидную структуру, в которой дисперсионной средой являются масла и смолы, а дисперсной фазой — асфальтены. Соотношение фаз" в системе и определяет физико-химические и физико-механические свойства битума. Масла и смолы улучшают его упругопластические свойства, особенно при низких температурах, асфальтогеновые кислоты повышают адгезию. Асфальтены сообщают битуму пластичность, снижают температуру хрупкости и повышают атмосферостойкость в битуме они являются основным структурообразующим компонентом. Сопоставление свойств и группового состава различных битумов дает основание считать, что битумы с повышенным содержанием смол и асфальтенов более водо- и ат- [c.30]

    Коллоидная стабильность и синерезис характеризуют склонность пластичных смазок к выделению части масла вследствие структурных изменений их коллоидной системы при использовании и хранении смазок. Коллоидная стабильность, как и синерезис смазки, зависит от свойств и количества загустителя и жидкой фазы и определяется по ГОСТ 7142-74.  [c.259]

    Пластичные смазки занимают промежуточное положение между жвдкими и твердыми смазочными материалами. Они представлякл собой структурированные коллоидные системы. Их свойства зависят прежде всего от особенностей трехмерного структурного каркаса, образующегося из дисперсной фазы, который в своих ячейках удерживает большое количество (80-90 %) дисперсионной среды. Устойчивость структурированной системы зависит от прочности структурного каркаса, сил взаимодействия между его отдельными частицами, между элементами структурного каркаса и дисперсионной средой на транице раздела фаз, числа контактов частиц каркаса в единице объема, электростатических свойств, критической концентрации ассоциации различных мыл и других коллоидно-химических факторов. [c.354]

    Основные характеристики смазок (табл. 7.8), по которым судят об их эксплуатационных свойствах и которыми руководствуются при выборе смазок для конкретных узлов трения, установлены ГОСТ 4.23-83 Система показателей качества продукции. Нефтепродукты. Смазки пластичные. Номенклатура показателей . Этот стандарт устанавливает обязательную номенклатуру показателей и признаков качества смазок, которые необходимо включить в НТД при их разработке. Реологические характеристики (прочностные и вязкостные), водостойкость, испаряемость, окисляемость, антикоррозионные, противоизносные и другие свойства характеризуют работоспособность смазок. Для определения стабильности смазок оценивают их коллоидную, механическую, химическую и термическую стабильности. [c.357]

    Системы с коагуляционными структурами обладают, как правило, небольшой прочностью, известной пластичностью, а также некоторой эластичностью. Эластические свойства коагуляционных структур, согласно П. А. Ребиндеру, можно объяснить изменением энтропии системы в результате переориентации образующих систему структурных элементов, сопутствующей изменению ее формы. Такими структурными элементами служат отдельные коллоидные частицы (в отличие от высокомолекулярных соединений где эластическая деформация связана с изменением взаимной ориентации звеньев молекулярных цепей). Системы с коагуляционными структурами проявляют также ползучесть, т. е. способность при течении к медленному развитию значительных остаточных деформаций практически без заметного разрушения пространственной сетки. Ползучесть системы определяется высокой, хотя и вполне доступной измерению вязкостью в области весьма малых скоростей течения. Только при больших скоростях течения в таких системах происходит значительное разрушение структуры, так как связи мекду частицами не успевают восстанавливаться и скорость разрушения становится больше скорости восстановления. [c.320]

    Для многих коллоидных растворов, суспензий и растворов ВМВ вязкость не остается постоянной при изменении давления. У этих систем произведение р1 снижается с увеличением р (см. рис. 23.7, 2). Это свидетельствует о том, что и вязкость падает. Такое отклонение от законов Ньютона и Пуазейля вызывается наличием структурной вязкости у подобных систем. Структурная вязкость — это дополнительная (к ньютоновской) вязкость, обусловленная добавочным сопротивлением течению со стороны внутренних пространственных структур — сеток, нитей, крупных капель эмульсий и т. п. Структурированные системы относятся к пластичным телам. Вязкость таких систем с увеличением давления уменьшается вследствие разрушения структуры. На рис. 23.7 видно, что при повышении давления в широком интервале уменьшение значений р1 н ц продолжается до некоторого предела, после чего обе эти величины становятся постоянными. Область постоянства вязкости аномально вязких жидкостей называют псевдопластической областью. Дальнейшее повышение давления вызывает увеличение р1 (и т]) (см. рис. 23.7,2), но это отклонение связано уже с турбулентностью. У аномально вязких коллоидных систем турбулентность обычно наступает раньше при меньших значениях давления, чем у ньютоновских жидкостей. [c.386]

    Появление в растворе анизометричных коллоидных частиц, существование которых впервые предположил Мак-Бен, экспериментально фиксируется рядом методов оптическими, рентгенографическими, реологическими. Так, например, при течении растворов ПАВ, содержащих мицеллы Мак-Бена, наблюдаются отклонения от уравнения Ньютона (см. гл. XI). Структура ленточных и пластинчатых мицелл, образованных параллельно упакованными молекулами ПАВ, идентична бимолекулярному слою. Поверхностные свойства анизометричных (и особенно ленточных) мицелл оказываются неодинаковыми на различных участках на плоских участках, где плотность полярных групп выше, чем на концевых, углеводородное ядро в большей степени экранировано от контакта с водной фазой, тогда как концевые участки проявляют меньшую гидрофильность, чем плоские. При дальнейшем увеличении общего содержания ПАВ в системе (или, что то же, уменьшении содержания воды) уменьшается подвижность мицелл и происходит их сцепление, в первую очередь, концевыми участками 3. Н. Маркиной и сотр. показано, что при этом образуется объемная сетка — коагуляционная структура (гель), с характерными для таких структур механическими свойствами пластичностью, прочностью, тиксотропией (см. гл. XI). [c.230]

    Пластифицирование битумов способствует увеличению расстояния между частицами дисперсной фазы, уменьшению размеров крупных агрегатов и увеличению их числа, а также более равномерному распределению коллоидно-дисперсной фазы системы. Введенные в битум пластификаторы оказывают влияние на прочность, эластичность, хрупкость и теплостойкость битума, на расширение температурного интервала эластично-пластичного состояния в пределах требуемой текучести и на другие свойства битума. В колонном аппарате в отличие от куба-окислителя периодического действия протекает [c.230]

    Коллоидные и микрогетерогенные системы с жидкой и твердой дисперсионной средой, как и все другие конденсированные системы, обладают определенными механическими свойствами — вязкостью, во многих случаях пластичностью, упругостью и прочностью. Эти свойства связаны со структурой подобных систем, поэтому их часто называют структурно-механическими свойствами. Эти свойства называют еще реологическими, так как учение о течении различных тел или, в более общем виде, о процессах деформации, развивающихся во времени, носит название peo логи и. [c.313]

    При растворении в масле алкилфенольных, сульфонатных и некоторых других присадок образуется коллоидная система, созданная частицами с числом агрегации до 1000 и размером 10 —10 см. К ранее упоминаемым силам, объединяющим молекулы в крупные частицы-мицеллы, добавляются силы поверхностного натяжения. Во взаимодействиях мицелл между собой начинают проявляться электростатические силы отталкивания. Более крупные агрегаты — макромицеллы пластинчатого типа с числом агрегации 500—10000 — создаются мылами жирных кислот, например в пластичных смазках. Размер таких мицелл может достигать 10 см. [c.206]

    Пластичные смазки — мазеобразные продукты, не обладающие текучестью при обычных температурах, цредставляющие собой особый класс смазочных материалов, приготовляемых путем введения в смазочные масла специальных, главным образом твердых мелкодисперсных загустителей, ограничивающих текучесть масел. Смазки — это коллоидные системы, имеющие пространственную структуру, образованную частицами загустителя. Жидкая фаза удерживается в полутвердом состоянии благодаря силам притяжения твердых частиц, а также механически включается внутрь кристаллов загустителя. Электронной микрофотографией, а также рентгеноструктурным анализом установлено, что большинство смазок имеет волокнистую структуру. Некоторые вещества (вода и др.), называемые стабилизаторами, повышают прочность коллоидной структуры. [c.374]

    Периодические коллоидные системы (ПКС) — это системы, состоящие из микрообъектов, взаимодействующих на большом (по сравнению с размерами атомов) расстоянии. Многие естественные и искусственные полутвердые (или полужидкие ) гетерогенные системы представляют собой ПКС. Они обладают ценными во многих отношениях (или, наоборот, нежелательными в ряде случаев) упруго-пластично-вязкими свойствами большинство этих систем способно к тиксотропным превращениям. ПКС широко распространены в природе (глины, грунты, почвы), их используют в промышленности (керамическая масса, цементные пасты, битумы, консистентные смазки). В зависимости от величины приложенной нагрузки и времени ее действия ПКС способны вести себя, как упругие твердые тела или как легкотекучие жидкости, после снятия нагрузки прочность их самопроизвольно восстанавливается. [c.19]

    Смазки или мази, являясь пластичными смазочными материалами, имемт полутвердую конспстендию и представляют собой коллоидные системы, состоящие в основлом из минерального масла и загустителя. Наиболее широко применяются консистентные смазки, в состав которых в качестве загустителя входят натровые и кальциевые мыла — соли естествен/ных и синтетических жирных кислот, а также церезины, парафины и др. Смазки, изготовленные на натровых мылах, имеют более высокую температуру плавления, чем смазки, в состав которых входят кальциевые мыла. Натровые смазки чувствительны к влаге, поэтому при повыше ,ной влажности среды применение их допустимо лить при условии частой смены смазки. Кальциевые смазки являются влагостойкими. [c.42]

    Периодические коллоидные структуры — это пластичные или ква-зипластичные твердые тела с присущим для них характерным сочетанием прочности, упругости, пластичности и вязкости. Прочность системы зависит от энергии связи между частичками, которая обусловлена природой, размером и формой их, а также свойствами адсорбционных слоев. [c.20]

    ПЛАСТИЧНЫЕ СМАЗКИ (коргсистентные смазки, от лат. onsisto-состою, застываю, густею), мазе- или пастообразные смазочные материалы, получаемые введением твердых загустителей в жидкие нефтяные или синтетич. масла и их смеси. Как правило, П.с. (в литературе их для краткости часто наз. просто смазками)-трехкомпонентные коллоидные системы, содержащие дисперсионную среду (жидкая основа), дисперсную фазу (загуститель), модификаторы структуры и добавки (наполнители, присадки). Благодаря высокой концентрации коллоидные частицы загустителя образуют пространств, структурный каркас, в ячейках к-рого прочно удерживается масло. Большинство П. с. имеет волокнистое строение. [c.565]

    Взаимодействие химических соединений муки и воды является решающим фактором производства и потребления макаронных изделий. При приготовлении теста в макаронную муку влажностью 15 % добавляют такое количество воды, чтобы влажность смеси стала 29,5...31,0 %. Этот диапазон влажности соответствует применяемому наиболее часто среднему замесу макаронного теста. На первом этапе замеса производится предварительное смешивание компонентов до образования крошкообразной массы. В процессе замеса происходит диффузия воды во внутрь частиц муки, растворение водорастворимых веществ, набухание белков и углеводов, входящих в состав муки. Для протекания этих процессов необходим определенный промежуток времени — выдержка теста. На следующем этапе замеса проходит пластикация сухих, твердых химических соединений муки и образование коллоидной системы — теста. Оно является, по существу, твердо-жидким телом, обладает одновременно упругоэластичными и пластично-вязкими свойствами. Для проведения такого сложного преобразования рецептурной смеси в готовое тесто требуются значительные механические воздействия. В условиях механизированного производства макарон второй этап замеса осуществляется шнеками макаронного пресса за счет интенсивного сдвига слоев теста. [c.111]

    Носитель может быть в виде крупно- или мелкозернистой массы, он может быть также коллоидальным. Предполагается, что носитель является каталитически инертным веществом в отношении реагирующих компонентов системы. В реакциях окисления, например при получении формальдегида из метилового спирта, рекомендуется употреблять в качестве носителя неокисляющийся материал (пемзу, обожженную глину или кизельгур). Вследствие того, что окись алюминия в этой реакции оказывается катализатором, алунд является в этом случае наиболее подходящим носителем. Когда катализатор употребляется на содержащем кремнезем носителе, следует избегать нагревания до температуры, при которой с катализатором могут образоваться силикаты. Если каталитическая реакция требует такой температуры, то окись магния, окись алюминия, природный боксит, известь или углекислый кальций могут легко заменить этст носитель. Указывается, что некоторые свойства носителя, например размер пор или капилляров, способность к адсорбции, способность обменивать ингредиенты, сопротивление механическому износу и коллоидную природу (пластичность, тиксотропию, флоккуляцию, коагуляцию и пр.) следует рассматривать в связи с возможностями нанесения (отложения) катализатора или пропитывания им. [c.475]

    Пластичные смазки — распространенный вид смазочных материалов, представляющих собою высококонцентрированные тик-сотропные дисперсии твердых загустителей в жидкой среде. Как правило, смазки — это трехкомпонентные коллоидные системы, содержащие дисперсионную среду — жидкую основу (70—90%), дисперсную фазу — загуститель (10—15%), модификаторы структуры и добавки — присадки, наполнители (1— 15%). В качестве дисперсионной среды смазок используют масла нефтяного и синтетического происхождения, реже их смеси. К синтетическим маслам относятся кремнийорганические жидкости — полисилоксаны, сложные эфиры, полигликоли, фтор- и хлорорганические жидкости. Их применяют преимущественно для приготовления смазок, которые используют в высокоскоростных подшипниках, работающих в широких диапазонах температур и контактных нагрузок. Для более эффективного использования смазок и регулирования их эксплуатационных свойств, например низкотемпературных, смазочной способности, защитных свойств, применяют смеси синтетических и нефтяных масел. [c.278]

    Пластичнью и полужидкие смазки представляют собой коллоидные системы, состоящие из масляной основы (дисперсионная среда) и загустителя (дисперсная фаза), а также содержат присадки и добавки, улучшающие их эксплуатационные свойства. В качестве загустителей используют углеводороды (парафин, церезин, петрола-тум), металлосодержащие мыла (кальциевые, натриевые, алюминиевые, литиевые), неорганические соединения (глины, силикагели) и продукты переработки мочевины. [c.382]

    Масла, на которых готовят смазки, могут храниться в герметичной таре в течение очень длительного времени, практически не изменяясь . Пластичные смазки, являющиеся коллоидными системами, значительно менее стабильны Особенно сильно смазки портятся при несоблюдении нормальных условий хранения. Вредное действие оказывает повышение температуры хранения уско-)яются отделение из смазок масла, окисление и уплотнение. Ловышенная влажность приводит к ухудшению качества гигроскопичных смазок, хранящихся в негерметичной таре. Смазки на маловязких маслах высыхают, загрязняются и обводняются. Уже говорилось о том, что масло может отпрессовываться из смазок при их хранении в больших бочках, бидонах и т. п. Срок хранения смазки ЦИАТИМ-201 значительно увеличился после перехода от расфасовки ее в 20-литровые бидоны к банкам на 1 л. [c.266]

    Пластичные смазми представляют собою коллоидные системы, структура которых чувствительна к различным воздействиям и особенно сильно к действию присадок и наполнителей. В связи с этим прежде чем приступить к обобщению материала о способах улучшения качества смазок при помощи добавок, рассмотрим современные представления о формировании структуры смазок. В настоящей главе в основном обобщены работы по мыльным смазкам на нефтяных дисперсионных средах, поскольку они составляют подавляющее большинство смазок общего назначения. Их производство и области применения наиболее полно изучены и описаны в литературе. [c.10]

    Классификация смазочных материалов, их краткая характеристика и области применения. Пластичные смазки как коллоидные системы. Принципиальные отличия, преимущества и неао статки пластичных смазок по сравнению с жиа-кими смазочными материалами. Классификация смазок, структура и объем их производства. [c.7]

    Некоторые коллоидные системы (консистентные смазки, масляные краски, пасты, глины) в результате структурообразоваиия приобретают пластичность и совсем не текут в области малых напряжений сдвига. Прочность образовавшихся структур невелика, н если приложить достаточное напряжение, система [c.335]

    ГЕЛИ (от лат. зе1о - застываю), 1) в коллоидной химии Г.-дисперсные системы с жидкой дисперсионной средой, в к-рых частицы дисперсной фазы образуют пространств, структурную сетку. Представляют собой твердообразные ( студенистые ) тела, способные сохранять форму, обладающие упругостью (эластичностью) и пластичностью. Типичные Г. имеют коагуляционную структуру, т.е. частицы дисперсной фазы соединены в местах контакта силами межмол. взаимодействия непосредственно или через тонкую прослойку дисперсионной среды. Для них характерна тиксотропия, т.е. способность в изотермич. условиях самопроизвольно восстанавливать свою структуру после мех. разрушения. Такие Г. образуются, напр., при коагуляции золей (к о а гели), понижении т-ры или концентрировании мицеллярных р-ров мыл, выделении новой дисперсной фазы из пересыщ. р-ров (л и о гели). Г. могут возникать в виде рыхлых осадков либо образуют структурную сетку во всем объеме первоначально жидкой системы без нарушения ее макрооднородности. Г. с водной дисперсионной средой наз. гидрогелями, с углеводородной - о р г а н о-гелями. [c.513]

    Коагуляционные структуры. Как следует из названия, фиксация взаимного положения частиц в этих системах наступает в результате коагуляции (слипания частиц). При достаточной концентрации дисперсной фазы коагуляция ведет к образованию сплошной рыхлой сетки из взаимосвязанных частиц. Наличие определенной прочности такой сетки ведет к превращению жидкой текучей взвеси в желеобразное или пластичное состояние. Отсюда и название структурированного коллоида — гель (gel) — структурированный коллоидный раствор. Коагуляция — наиболее распространенная причина структурирования. Важным частным случаем коагуляционного структурирования является образование параллельных линейных цепочек из связан-HbD между собой частиц при действии на дисперсную систему магнитного или электрического поля. С их изучения и началось становление современной теоретической реологии дисперсных систем. [c.677]


Смотреть страницы где упоминается термин Коллоидные системы пластичность: [c.340]    [c.220]    [c.174]    [c.495]    [c.220]    [c.137]   
Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Пластичность

Пластичность системы

Системы коллоидные



© 2024 chem21.info Реклама на сайте