Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия разделения газов

    В отличие от газовой хроматографии, в которой подвижной фазой служит газ-носитель, выполняющий лишь функцию переносчика вешества и влияющего только на эффективность колонки, в жидкостной хроматографии в функцию подвижной фазы входит еще и влияние на селективность колонки. Это свойство подвижной жидкой фазы имеет первостепенное значение для ЖАХ, так как оно позволяет достигать оптимальных условий разделения не только выбором соответствующего селективно действующего адсорбента, что не всегда просто, но и подбором системы растворителей, действующих селективно. [c.79]


Таблица 23. Условия разделения газов......... Таблица 23. <a href="/info/40881">Условия разделения</a> газов.........
    Пример 8. Рассчитать абсорбционно-отпарную колонну на машине Урал-1 применительно к условиям разделения газов пиролиза легких углеводородов и бензина на заводах синтетического спирта. Давление в колонне составляет 40 ат. Перед поступлением в колонну пирогаз охлаждается до 249 °К. Состав и количество (в моль/ч) исходной смеси (поток Р) приведены в табл. 19. [c.86]

    Необходимо обратить особое внимание на методы газовой хроматографии, которые получили в СССР широкое развитие благодаря работам А. А. Жуховицкого и Н.М. Туркельтауба. Вопросы хроматографии газов связаны с разработкой методов и приемов, специфичных для условий разделения газов и паров. Эти вопросы имеют непосредственное отношение к задачам органического синтеза и, в частности, органического катализа. Напрпмер, важное значение имеют задачи разделения продуктов каталитического процесса при крекинге нефти или продуктов, возникающих [c.197]

    Продуктовый сепаратор представляет собой цилиндрическую емкость высокого давления диаметром корпуса 1,0 ж и длиной 6—8 м. Он расположен под углом 4—8° к горизонту, что обеС Пе-чивает наилучшие условия разделения газа и жидкости. [c.39]

    Продуктовый сепаратор представляет собой емкость высокого давления — диаметр корпуса 1,0 и длина 6—8 м. Он располагается в положении, близком к горизонтальному, под углом 4—8° к горизонту, что обеспечивает наилучшие условия разделения газа и жидкости. [c.313]

    Рабочие условия разделения газов крекинга ректификацией при низкой температуре под давлением [c.153]

    При этом необходимо соблюдение обычных для процессов разделения газов условий безопасности, основными из которых являются поддержание требуемых давления или вакуума в системе, уровней жидкости в аппаратах, нужной температуры процесса установка необходимых предохранительных клапанов и затворов герметичность системы, работающей при разрежении. В тех случаях, когда работают с ацетиленом-концентра-том, перечисленные мероприятия должны выполняться с учетом специфических свойств этого газа. [c.102]


    Следует отметить, однако, что выбор схемы процесса мембранного разделения газов определяется, в первую очередь, конкретными условиями производства, видом и характеристиками промышленно выпускаемых мембран, оборудования, индексом цен и многими другими технико-экономическими факторами. [c.228]

    К. Из рис. 8.2 [32] следует, что в данных условиях скорость газа слабо влияет на эффективность разделения. [c.276]

    Рабочие условия разделения продуктов окислительного дегидрирования этана ректификацией ожиженных газов при низком давлении [c.154]

    Распределительная хроматография основана на распределении вещества между подвижной жидкой или газовой фазой и неподвижной жидкой фазой, закрепленной на твердой фазе (носитель) путем полимолекулярпой адсорбции. В первом случае распределение происходит за счет растворения компонентов газовой смеси в адсорбированной пленке жидкости. Соотношение между концентрацией компонента в пленке адсорбированной жидкой фазы и концентрацией (парциальным давлением) его в газовой фазе при условии равновесия между подвижной и неподвижной фазами определяется законом Генри ( 13.3). Поскольку растворимость газов и паров сильно зависит от природы растворителя, то варьирование жидкой фазы представляет практически неисчерпаемые возможности для подбора условий разделения летучих веществ, Распределительная газовая хроматография обычно называется газожидкостной (ГЖХ). [c.338]

    Процесс конденсации продолжается до участка поверхности, на котором достигается равенство = I t. После конденсации и охлаждения один или несколько компонентов выводятся из системы, а обращаемая часть возвращается в технологический процесс. Неконденсирующиеся компоненты препятствуют эффективной конденсации, но высокие скорости движения газовых составляющих способствуют удалению конденсата из застойных зон в деформированных участках труб. Для таких случаев на зависимостях д = f(l) и Q = = /(/) не всегда отмечается характерный участок со сниженной плотностью теплового потока. После выпадения конденсата охлаждение газовых компонентов происходит в присутствии экранирующего слоя конденсата, поэтому процесс охлаждения идет не столь эффективно. По условиям технологии производства часто охлаждают только обращаемую составляющую парогазовой смеси, а другие компоненты смеси направляют в атмосферу или дренаж. В этом случае аппарат целесообразно эксплуатировать только в режиме конденсации с дальнейшим разделением газа н жидкости. Доохлаждение газа или жидкости возможно в отдельных АВО, в которых обеспечиваются высокие скорости движения продукта по всему сечению труб. [c.147]

    Выбор температуры и давления конденсации сырого газа. Заданный для разделения газ содержит более 40% (мол.) углеводородов, более тяжелых, чем этан, поэтому относится к жирным газам. Условия разделения сы- [c.127]

    Для улучшения условий разделения в схему перед этановой колонной был включен абсорбер, орошаемый легким газойлем (рис. 100). В абсорбере 1 жирный газ, подаваемый под давлением 10—12 ат, разделяется на сухой, уходящий с верху абсорбера. [c.309]

    Нефть, поступающая из штуцеров, попадает в сепаратор или трап, где происходит ( ефть разделение газа и нефти. Углеводородные газы, особенно тяжелые, хорошо растворяются в нефти. Поэтому вместе с нефтью движется по насосно-компрессорным трубам и растворенный в ней газ. Количество этого газа в нефти может быть значительным, составляя десятки, а иногда и сотни кубометров (при нормальных условиях) в 1 /га нефти. Прежде чем нефть направить -в резервуар для хранения и затем на переработку, нужно выделить из нее растворенный газ. Если этого не сделать, газ все равно выделится, как только попадет в резервуар или в цистерну для перевозки. Но в этих случаях газ не только будет утерян, но и может явиться причиной пожара и взрыва. Этот газ, называемый попутным, поскольку он добывается попутно с нефтью, представляет большую ценность не столько как топливо, сколько как сырье для нефтехимической промышленности. [c.124]

    В первой главе дан исторический обзор развития известных гипотез и моделей процесса энергетического разделения газа в вихревой трубе. Из него следует, что до настоящего времени нет не только единого мнения исследователей о природе эффекта, но и отсутствует ясное представление о механизме поведения газов в условиях наличия поля центробежных сил, градиентов температуры и давления и всего комплекса проявляемых свойств этого эффекта. Для использования свойств закрученного расширяющегося газового потока в технологических процессах с целью интенсификации теплообмена и химических превращений требуются знания механизмов-. [c.34]

    Температурная эффективность работы вихревых труб зависит от длины или калибра камеры энергетического разделения газа, ее диаметра или масштаба и геометрии. Во многих исследованиях [14, 15], выполненных с ТЗУ, было установлено, что для адиабатных условий с ростом диаметра вихревой трубы (от 10 до 33 мм) температурная эффективность возрастает, увеличение > 33 мм дает очень малое преимущество по сравнению с трубой диаметром 33 мм. Учитывая применение в промышленности вихревых труб до 33 мм [15], предложено вести расчет температурного к.п.д. по формуле [c.98]


    Исходя из условий струйной модели процесса энергетического разделения газа в вихревой трубе, это явление объясняется расположением как основных струй, так и струй охлажденного потока от осевой области до периферийной области. Такое пространственное расположение струй в ВТ приводит к вытеканию через диафрагменное отверстие ВЗУ при малых ц части газа основного потока. [c.120]

    Результаты исследований указывают на неравновесный характер процесса температурного разделения газа в условиях высокоскоростного течения закрученных струй, при этом переохлаждение и конденсация протекают скачкообразно. Процесс конденсации и сепарации в поле центробежных сил, которое на несколько порядков превосходит силу тяжести, идет непрерывно, и существующие методы исследований не позволяют установить количественные закономерности перераспределения паров и сепарации влаги. [c.232]

    Иначе обстоит дело с селективностью. Она определяется исключительно природой взаимодействующих веществ компонентов разделяемой смеси и неподвижной жидкой фазы. Умелое варьирование свойств неподвижных жидких фаз позволяет широко изменять условия разделения. Это является одним из существенных факторов, способствующих расширению применения газо-жидкостной хроматографии для аналитического разделения сложных смесей и обеспечивающих ее успех. [c.47]

    На рис. 10 показана самодельная установка с таким детектором, в качестве которого был использован электрический газоанализатор промышленного изготовления типа ПГФ-11-54 с видоизмененной нами системой рабочей и сравнительной камер. Этот простой прибор в течение многих лет с успехом применялся на химических предприятиях В контроле производства фенола и ацетона для определения примесей этилбензола и бутилбензола в техническом изопропил-бензоле. Типичная хроматограмма приведена на рис, 11. Условия разделения колонка 0,28 X 120 см с 20% парафина на инзенском кирпиче температура колонки 132° С скорость потока газа-носи- [c.27]

    Хроматермографический вариант был предложен впервые советскими учеными А. А. Жуховицким и Н. М, Туркельтаубом в 1951 г. Хроматермография представляет собой разновидность проявительного способа, когда формирование хроматограммы происходит не только под действием промывания колонки проявляющим растворителем или газом-носителем, но и под действием движущегося температурного поля с градиентом температуры по длине колонки, создаваемым движущейся трубчатой электрической печью (рис. 1.5). Наличие дополнительного температурного фактора приводит к улучшению условий разделения многокомпонентной смеси. Принципиальным отличием хроматографии от обычного элюентного способа является одинаковая скорость движения распределенных по длине колонки компонентов смеси, равная скорости движения печи. [c.17]

    Далее колонку промывают растворителем или газом-носителем (проявляют). На выходе из колонки детектор непрерывно фиксирует концентрацию, а связанный с ним регистрирующий прибор записывает выходные данные в виде ряда пиков, соответствующих числу разделенных компонентов. При правильном выборе условий разделения (сорбента, температуры колонки, скорости потока проявителя, количества исследуемой смеси, вводимой в колонку, и др.) компоненты смеси из колонки выходят практически в чистом виде. [c.223]

    В обычных условиях все газы, как известно, полностью смешиваются друг с другом. Однако при очень высоких давлениях, когда плотности газов приближаются к плотностям соответствующих жидкостей, наблюдается в некоторых случаях разделение их смесей на две фазы разного состава. Существование подобной ограниченной взаимной растворимости газов было впервые обнаружено на системе N2—NH3 при 140 °С и 8 тыс. атм. [c.163]

    Рабочие условия разделения газов крекинга ректификацией нри низкой теынературе нод давлением [c.153]

    Условия разделения газов, содержащих кислород, азот, закись азота, окись углерода, окись азота и двуокись углерода, были разработаны Шульчевским и Хигухи . Разделение проводили на колонке длиной 2 м, наполненной предварительно высушенным силикагелем. Колонку охлаждали сухим льдом с ацетоном, а затем вводили в нее пробу. Первыми выходят кислород с аргоном, за ними следуют азот, окись азота и окись углерода. Затем снимают охлаждение, после чего начинают вымываться закись азота и двуокись углерода. [c.117]

    Разделение газа производится примерно следующим образом (рис. 40). После компримирования и отделения водорода абсорбционным способом фракция С4 стабилизируется. При этом отгоняются кипящие при —23° метилацетилен и пропан, образующие азеотропную смесь. Смесь углеводородов С4 затем ректифицируется в колонне, имеющей 100 тарелок. Здесь отделяется смесь из бутена-1 и бутадиена с некоторым количеством изобутана, изобутена и к-бутана (бутадиеновый концентрат), причем к-бутан частично уходит с дистиллятом, а частью остается в остатке. В остатке остаются оба бутена-2, часть к-бутана и гомологи ацетилена (С4). В этой связи интересно сопоставить температуры кипения отдельных изомеров в нормальных условиях (см. стр. 11 и 36) с летучестью в условиях экстрактивной перегонки (см. стр. 78). Остаток поступает в депента-низатор, где от него отделяются высшие углеводороды, а головной продукт, состоящий из бутена-2, [c.81]

    При выборе основных параметров разделения (Р и ) исходят в первую очередь из экономичных условий разделения давление и температура колонн вверху должны быть такими, чтобы верхний продукт можно было сконденсировать водой, воздухом или имеющимся на установке недорогим хладоагентом (обычно пропаном). В то же время температура должна быть достаточно низкой с тем, что нижний продукт можно было испарять с помощью имеющихся средств подогрева. При перегонке нефти и мазута необходимо также следить за тем, чтобы максимальная температура нагрева была не выше температуры термического разложения продуктов и чтобы она была не выше критической температуры нижнего продукта. Прн разделсник нефти и широких нефтяных фракций лучше поддерживать как можно меньшее давление, близкое к атмосферному, с тем, чтобы обеспечить наиболее высокую эффективность разделения смеси. При разделении легких углеводородных газов, обладающих высокой летучестью, часто используют пониженное давление, охлаждая верх колонны специальными хладоагентами. [c.78]

    Вследствие того, что по условию процесс перемешивания зазнородных газов проводится при Т, Р=сопз1, убыль энергии иббса при обратимом проведении процесса равна максималь-но-полезной работе и просто работе — в необратимых процессах. Следовательно, в прямом процессе преобладает доля самопроизвольного, в обратном процессе — разделение смеси газов на отдельные компоненты, который может проходить только при затрате работы и в таком количестве, которая должна компенсировать уменьшение энергии Гиббса в прямом процессе, преобладает доля несамопроизвольного процесса. В обратимом процессе затраченная работа будет минимальной. Фактически же процесс разделения газов проводят с конечной скоростью, поэтому на него затрачивается гораздо больше работы, чем в обратимом процессе. Однако затрачивая в необратимом процессе избыток энергии на разделение газов, значительно выигрывают время на их разделение. [c.127]

    Низшие олефины. Олефиновые углеводороды от этилена до бутиленов при обычных условиях являются газами, амилены С5Н10— низкокипящими бесцветными жидкостями. Некоторые свойства этих углеводородов приведены в табл. 3. Из данных по критической температуре ясно, что этилен можно превратить в жидкость только при низких температурах и высоких давлениях, охладив, например, кипящим аммиаком. Другие газообразные олефины сл<ижаются под давлением уже при охлаждении водой. При сравнении олефинов с соответствующими парафинами видно, что этилен кигит ниже этана на 15°С, а пропилен — ниже пропана на 5,5 С (см. табл. 1, стр. 24). Это очень важно для процессов переработки, когда этилен (и с большей трудностью — пропилен) отделяют от соответствующих парафинов ректификацией. Температуры кипения бутиленов и бутанов очень близки, и для их разделения простая ректификация не пригодна. [c.33]

    Опытные образцы ТВКСН-Ш),2 (двух типоразмеров по размеру вихревых труб) показали устойчивую работу и обеспечивали условия для температурного разделения газов. Например, температура всего потока отходящего газа снижалась в ТВКСН-Ш)д до температуры хладоагента (минус 6°С), а температура охлажденного газового потока при ц = 0,59 ((минус 8,5°С). При этом наблю- [c.89]

    Выделение фракций С2, Сз, С4 и юлучение концентрированных алкенов. Разделение газов пиролиза на узкие углеводородные фракции и выделение из них концентрированных алкенов проводится ректификацией. Примерные условия газоразделения и средние коэффициенты относительной летучести ср ключевых пар компонентов приведены в табл. 9.4. [c.171]

    В каждом методе применяются соответствующие мембраны. Различия в прохождении веществ через мембраны могут быть связаны как с равновесными, так и с кинетическими свойствами разделяемой системы. По этим признакам мембраны подразделяют на фильтрационные (полупроницаемые) и диффузионные. Первые из них способны разделять вещества в равновесных условиях, размер их пор соизмерим с размерами проникающих частиц или молекул. Диффузионные мембраны обычно применяют для разделения газов методом газовой диффузии. Размер иор у них должен быть таким, чтобы обеспечить кнудсеновский поток газов через мембраны. Фильтрационные мембраны в свою очередь можно классифицировать на макропористые, переходнопористые и микропористые (подобно адсорбентам). Микропористые Мембраны могут быть нейтральными или нонитовьши. [c.238]

    Компрессия, применяется в схемах разделения газов совместно с конденсацией. При повышении давления газов создаются наиболее благоприятные условия конденсации углеводородов. Из скомпримированного (сжатого) газа в первую очередь конденсируются наиболее тяжелые компоненты. [c.288]

    Высокоскоростное вращательное движение газовых потоков в вихревой трубе — необходимое,но недостаточное условие для реализации эффекта температурного разделения газа. Взаимодействие потоков в межструйном пространстве, близком к сопловому сечению, определяет эффективность процесса температурного разделения. [c.90]

    Установка работает следующим образом. Сжатый компрессорный воздух или газ через приемный патрубок поступает в распределительную камеру (2), откуда по каналам ВЗУ (8) в виде высокоскоростных закрученных струй попадает в трубы (7), где и реализуется эффект температурного разделения с образованием внутреннего холодного потока и внешнего подогретого потока. Степень расширения газа устанавливается с помощью подбора площади сечения каналов ВЗУ в зависимости от величины рабочего давления и допустимого уровня потерь давления. Аналогичным образом рассчитывается и площадь сечения винтовых каналов (11) конического фазоотделителя (10). В первом модуле происходит предварительная очистка газа от капельной влаги и механических примесей, выводимых через каналы (И) в камеру (4), а затем через конденсатоот-водчик (25) в сливную емкость. Очищенный газ из приосевой области через диафрагменные каналы ВЗУ (8) и трубки (9) поступает в камеру (3), откуда через соединительный патрубок (13) и винтовые каналы ВЗУ (20) в виде высокоскоростных закрученных струй направляется в трубу (19), в которой также происходит температурное разделение газа, но степень расширения уже близка к я > 2, что обеспечивает создание условий для процесса конденсации паров с последующей сепарацией жидкой фазы в пристенную зону. [c.243]

    Исследования различных типов химических реакций в условиях течения и взаимодействия закрученных газовых потоков показали возможность их интенсификации за счет использования различных свойств закрученных потоков. Путем рационального конструирования на базе знаний особенностей гидро- и термодинамики течения таких потоков можно решать задачи, связанные как с необходимостью создания условий для интенсивного перемешивания газовых, газопылевых или газожидкостных компонентов, так и с требованиями максимального снижения турбулиза-ции реагентов. В рассмотренных примерах в основном использованы особенности струйного течения газовых потоков и наличие поля центробежных сил. Однако возможно использование и эффекта температурного разделения газа на холодную и горячую составляющие, образование противотока. Эти особенности течения высокоскоростных закрученных потоков могут быть использованы для проведения реакций, требующих малого времени контактирования реагентов и быстрого нафева или охлаждения продуктов реакции, быстрого отвода их из зоны реакции. Многообразие тепловых, гидродинамических и структурных форм закрученных газовых потоков открывает широкие перспективы не только для совершенствования известных конструкций реакционных аппаратов, но и для создания принципиально новых технических решений применительно к различным областям народного хозяйства. [c.321]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    В условиях дросселировяния газа при значительных перепадах давления и температур ингибитор должен сохранять свои защитные качества. Ингибиторы не должны ухудшать антигидратные свойства метанола и осушающие свойства гликолей или тормозить процесс метанола и эмульсий, вспенивания самих эмульсий или отдельно водной и углеводородной фаз после их разделения. [c.185]


Смотреть страницы где упоминается термин Условия разделения газов: [c.355]    [c.193]    [c.323]    [c.33]    [c.96]    [c.29]   
Смотреть главы в:

Курс газовой хроматографии Издание 2 -> Условия разделения газов




ПОИСК





Смотрите так же термины и статьи:

Разделение газов

Разделение условие



© 2025 chem21.info Реклама на сайте