Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфолипиды и триглицериды

    РИС. 12-8. Биосинтез триглицеридов и фосфолипидов. [c.555]

    Фосфолипиды. ... Триглицериды. ... ДНК (продукты пиролиза) [c.142]

    Е. Метаболизм триглицеридов, фосфолипидов гликолипидов [c.554]

    В этом разделе уместно обсудить также важную группу липо-протеинов сыворотки крови, хотя такие белки не являются мембранными в строгом смысле слова. Эти белковые комплексы растворимы в воде, что способствует транспорту липидов в организме. Состав одного из липопротеинов сыворотки крови приведен в табл. 25.3.1 помимо фосфолипидов и белков он содержит сложные эфиры холестерина и триглицериды. Определена аминокислотная последовательность некоторых апопротеинов [29]. Обычно принимают, что липопротеины сыворотки имеют мицеллярную структуру, но детальное расположение белков и различных классов липидов внутри этой структуры до конца не выяснено. [c.123]


    В состав растительных масел, получаемых из семян, входят 95... 98 % триглицеридов, 1...2 % свободных жирных кислот, 1... 2 % фосфолипидов, 0,3... 0,1 % стери-нов, а также каротиноиды и витамины. Из ненасыщенных жирных кислот в составе масел преобладают олеиновая, линолевая, линоленовая, которые составляют 80... 90 % общего содержания жирных кислот. Так, в подсолнечном масле содержится [c.66]

    Необходимо подчеркнуть, что в стенке кишечника синтезируются жиры, в значительной степени специфичные для данного вида животного и отличающиеся по своему строению от пищевого жира. В известной мере это обеспечивается тем, что в синтезе триглицеридов (а также фосфолипидов) в кишечной стенке принимают участие наряду с экзогенными и эндогенные жирные кислоты. Однако способность к осуществлению в стенке кишечника синтеза жира, специфичного для данного вида животного, все же ограничена. Показано, что при скармливании животному (например, собаке), особенно предварительно голодавшему, больших количеств чужеродного [c.369]

    Жирные кислоты различных липидных фракций плазмы здоровых кроликов и кроликов с гиперлипемией. (Метиловые эфиры к-т фосфолипидов, триглицеридов, холестерина.) [c.184]

    Известно, что скорость биосинтеза жирных кислот во многом определяется скоростью образования триглицеридов и фосфолипидов, так как свободные жирные кислоты присутствуют в тканях и плазме крови в небольших количествах и в норме не накапливаются. [c.392]

    Разделены насыщенные и ненасыщенные углеводороды, эфиры холестерина, холестерин, три-, ди- н моноглицериды, фосфорсодержащие соединения Разделены фосфолипиды, триглицериды, эфиры холестерина, желчные кислоты, жирные кислоты [c.412]

    Состав и свойства. Р. м. на 94-96% состоят из смесей триглицеридов высших жирных кислот (табл. 1). Оставшуюся часть составляют в-ва, близкие к жирам (напр., фосфолипиды, стерины, витамины), своб. жирные к-ты и др. компоненты. [c.193]

    Компоненты P.m., отличные от триглицеридов, подразделяют на омыляемые и неомыляемые. К первым относят своб. жирные к-ты (содержание 1-2%), фосфолипиды (0,5-4%), стерины (0,3-1,3%), воски и воскообразные в-ва (0,002-0,4%), пигменты (не более 0,16%), ко вторым-белки (0,1-1,5%), витамины (до 0,5%), углеводороды и др. [c.193]

    В последние годы разработаны многочисленные методы фракционирования смесей липидов. Особенно пригодными оказались фракционная кристаллизация при низких температурах и фракционирование с помощью соединений включения мочевины, например для разделения насыщенных и ненасыщенных жирных кислот и их эфиров. Для выделения метиловых эфиров жирных кислот с одинаковой длиной цепи была использована вакуумная дистилляция, а молекулярную дистилляцию применяли для разделения моно-, ди- и триглицеридов. Противоточное распределение между двумя жидкими растворителями использовалось для фракционирования жирных кислот в соответствии с длиной цепи или в соответствии со степенью нена-сыщенности, а также для разделения моно-, ди- и триглицеридов и фосфолипидов. Разделение нейтральных и кислых липидов осуществляли диализом через каучуковые мембраны. [c.144]


    Плазматическая мембрана состоит из двойного липидного слоя. Гидрофобные концы молекул фосфолипидов и триглицеридов направлены внутрь, а гидрофильные головки — наружу. Благодаря гидрофобным взаимодействиям между остатками жирных кислот, входящих в состав липидов, и электростатическому взаимодействию между гидрофильными головками мембрана стабилизируется. В двойной слой липидов встроены белки так называемые интегральные белки мембран. Они плавают в этом слое, будучи погружены в него частично, или же пронизывают его насквозь. Другие белки прикреплены к поверхности мембраны, и их называют периферийными белками (рис. 1.6). Некоторые мембраны, по-видимому, с одной или с обеих сторон покрыты сетью вытянутых белковых молекул. [c.23]

    Осознание влияния состава виноматериала на поведение пены позволило провести оценку виноматериалов, полученных из одного сорта винограда. Вина, полученные из собранной распавшейся пены, характеризовались большей способностью к ценообразованию и большей стабильностью пены, чем вина, изготовленные из соков с большим отношением содержания сахара к кислотности. Для контроля способности игристых вин к ценообразованию можно использовать купажирование виноматериалов, полученных из одного сорта винограда [34]. В виноматериалах, которые еще не подвергались карбонизирующему брожению, стабильность пены зависит от общего содержания линолевой кислоты (то есть от суммы содержания свободной, несвязанной кислоты и кислоты, входящей в состав других соединений). Высота пенной шапки увеличивается вместе с ростом содержания винно-каменной кислоты и глюкозы и уменьшается с повышением содержания белков. В винах типа avas (подвергавшихся карбонизирующему брожению) высота пенной шапки увеличивается с ростом концентрации пальмитиновой кислоты. Стабильность пены в таких винах будет тем выше, чем выше в них концентрация белка, ксилозы и полисахаридов, снижаясь с увеличением общего содержания двуокиси серы. В винах типа avas на стабильность пены и высоту пенной шапки положительно влияет концентрация жирных кислот, а концентрация белков может влиять на пену по-разному. Эти данные существенно отличаются от полученных при исследованиях пива, что объясняется более высоким содержанием спирта и распределением жирных кислот в виде компонентов фосфолипидов, триглицеридов и липопротеинов [46]. [c.199]

    Липиды разных типов (см. приложение 8) по-разному ведут себя в гидратированных средах. Действительно, в воде некоторые липиды, такие, как углеводородные цепи жирных кислот и триглицериды, образуют полностью разделенные фазы, тогда как главные липиды мембран (фосфолипиды и гликолипиды) образуют ламеллярные (пластинчатые) или инверсные гексагональные (шестиугольные) структуры (рис. 7.16). [c.307]

    Стеарил-коэнзим-А-десатураза Фосфолипиды, триглицериды, жирные [c.60]

    От обычных белков, состоящих исключительно из протеиногенных аминокислот, следует отличать сложные белки, называемые также конъюгированными белками или протеидами. Это вещества, содержащие помимо белковой части небелковый органический или неорганический компонент, необходимый для функционирования, могущий быть связанным с полипептидной цепью ковалентно, гетерополярно или координационно и вместе с аминокислотами присутствующий в гидролизате. Важнейшие представители сложных белков гликопроТеины (простетическая группа — нейтральные сахара (галактоза, манноза, фукоза), аминосахара (N-aцeтилглюкoзa-мин, N-aцeтилгaлaктoэaмин) или кислые производные моносахаридов (уро-новые или сиаловые кислоты)), липопротеины, содержащие триглицериды, фосфолипиды и холестерин, металлопротеины с ионом металла, связанным ионной или координационной связью, фосфопротеины, связанные эфирной связью через остаток серина или треонина с фосфорной кислотой, нуклеопротеины, ассоциирующиеся с нуклеиновыми кислотами в рибосомах или вирусах, а также хромопротеины, содержащие в качестве просте-тической группы окрашенный компонент. Обзор структур важнейших белков см. в разд. 3.8. [c.345]

    Ферментные системы печени способны катализировать все реакции или значительное большинство реакций метаболизма липидов. Совокупность этих реакций лежит в основе таких процессов, как синтез высших жирных кислот, триглицеридов, фосфолипидов, холестерина и его эфиров, а также липолиз триглицеридов, окисление жирных кислот, образование ацетоновых (кетоновых) тел и т.д. [c.556]

    Линолевая и линоленовая кислоты содержатся в различных растительных продуктах в виде их триглицеридов, т. е. в виде ненасыщенных жиров, и в некоторых животных продуктах в виде фосфолипидов. Арахидоновая кислота встречается только в животных жирах. [c.621]

    Сумма липидов Триглицериды Фосфолипиды Холестерин [c.234]

    Липиды с эфирной связью по структуре очень сходны с триглицеридами и фосфолипидами. Различие заключается только в том, что рассматриваемая группа соединений вместо одной из ацильных групп содержит алкильную (—ОН) или алкенильную (—О—СН = СН—Н) группу [65]. Плазмалогены — липиды, содержащие алк-1-енольную группу, — были впервые обнаружены Фельгеном и Войтом в 1924 г. Разрабатывая методы гистологического окрашивания, эти авторы обнаружили, что при обработке срезов ткани кислотой происходит освобождение альдегидов. Последующие исследования показали, что альдегиды образуются в результате расщепления липидов, содержащих алкенильную группу  [c.558]


    Определение жирных к-т — компонентов фосфолипидов, триглицеридов и эфиров холестерина найдены олеиновая, стеариновая, эйкозатриеновая и др. к-ты. [c.186]

    Образование хиломикронов и транспорт липидов. Ресинтезированные в эпителиальных клетках кишечника триглицериды и фосфолипиды, а также поступивший в эти клетки из полости кишечника холестерин (здесь он может частично эстерифицироваться) соединяются с небольшим количеством белка и образуют относительно стабильные комплексные частицы—хиломикроны (ХМ). Последние содержат около 2% белка, 7% фосфолипидов, 8% холестерина и его эфиров и более 80% триглицеридов. Диаметр ХМ колеблется от 0,1 до 5 мкм. Благодаря большим размерам частиц ХМ не способны проникать из эндотелиальных клеток кишечника в кровеносные капилляры и диффундируют в лимфатическую систему кишечника, а из нее—в грудной лимфатический проток. Затем из грудного лимфатического протока ХМ попадают в кровяное русло, т.е. с их помощью осуществляется транспорт экзогенных триглицеридов, холестерина и частично фосфолипидов из кишечника через лимфатическую систему в кровь. Уже через 1—2 ч после приема пищи, содержащей жиры, наблюдается алиментарная гиперлипемия. Это физиологическое явление, характеризующееся в первую очередь повышением концентрации триглицеридов в крови и появлением в ней ХМ. Пик алиментарной гиперлипемии наблюдается через 4—6 ч после приема жирной пищи. Обычно через 10—12 ч после приема пищи содержание триглицеридов возвращается к нормальным величинам, а ХМ полностью исчезают из кровяного русла. [c.370]

    Фосфатидная кислота лежит в пункте пересечения метаболических п тей. Так, с одной стороны, в результате отщепления фосфатной групп специфической фосфатазой (реакция г) и последующего присоединен к оставшемуся диглицериду дополнительной ацильной группы (кг правило, с ненасыщенной связью) синтезируются триглицериды (pea ция д). С другой стороны, из фосфатидной кислоты и СТР может си тезироваться DP-диглицерид (реакция е) этот процесс, аналогичнь взаимодействию СТР с фосфорилированными сахарами [уравнен (11-24)] или с холинфосфатом [уравнение (11-26)], является первь этапом синтеза фосфолипидов у бактерий. [c.555]

    Липиды—это сложные эфиры глицерина или сфингозина (длинноцепочечного аминоспирта) и жирных кислот (предельных и непредельный), содержащих в основном углеводородные радикалы —С18. Большинство лигшдов имеют в молекуле две такие гидрофобные цепи. Полярные части могут включать различные химические группы эфирвые (моно-, ди- и триглицериды), остатки фосфорной кислоты (фосфолипиды), а также углеводные остатки (в большой группе гликолипидов). На рис. П-ЗО приведены структурные формулы некоторых наиболее распространенных липидов различных классов. В организме липиды, как правило, вместе с белками являются основной составляющей таких биоструктур, как клеточные мембраны. [c.96]

    А. Лавуазье, а первые исследования по выяснению хим. строения Л. принадлежат К, Шееле и М Шеврёлю. Впервые синтезы триглицеридов осуществили М. Бертло в 1854 и Ш. Вюрц в 1859. Фосфолипиды выделены М. Гобли в 1847, а затем получены в более чистом виде Ф. А. Хоппе-Зейлером в 1877. К этому времени уже было установлено строение ряда важнейших жирных к-т. [c.598]

    ЛИЧНЫЙ представитель — фосфатидилхолин, или лецитин. Электрически заряженные фосфатная и холиновая группы образуют полярную головку молекулы. В фосфолипидах второй группы, сфингомиелинах, в качестве центрального звена присутствует особое основание с длинной цепью — сфингозин. В отличие от триглицеридов, которые при температуре тела представляют собой жидкость, фосфолипиды находятся в [c.149]

    Ресинтез фосфолипидов в кишечной стенке. В энтероцитах наряду с ресинтезом триглицеридов происходит также и ресинтез фосфолипидов. В образовании фосфатидилхолинов и фосфатидилэтаноламинов участвует ресинтезированный диглицерид, а в образовании фосфатидилинозитолов — ресинтезированная фосфатидная кислота. Участие этих субстратов в образовании фосфолипидов в стенке кишечника происходит по тем же закономерностям, что и в других тканях (см. с. 396, 397). [c.369]

    У бактерий полиненасыщенные жирные кислоты, как правило, отсутствуют, но часто встречаются разветвленные жирные кислоты, равно как и циклопропансодержащие кислоты, оксикислоты и свободные неэтерифицированные жирные кислоты. Содержание жирных кислот в различных органах одного и того же организма неодинаково. Например, липидный компонент биологических мембран может быть на 90% представлен фосфолипидами. Фосфолипиды в свою очередь характеризуются более высоким содержанием ненасыщенных жирных кислот, чем триглицериды. [c.153]

    Напомним, что плазменные липопротеины —это сложные комплексные соединения, в состав которых, кроме белка, входит липидный компонент. Плазменные липопротеины имеют характерное строение внутри липопротеиновой частицы находится жировая капля (ядро), содержащая неполярные липиды (триглицериды, этерифицированный холестерин). Жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин. Толщина этой оболочки составляет 2,0—2,5 нм, что соответствует половине толщины фосфолипидного бислоя клеточной мембраны. [c.405]

    Плазменные липопротеины (ЛП)—это сложные комплексные соединения, имеющие характерное строение внутри липопротеиновой частицы находится жировая капля (ядро), содержащая неполярные липиды (триглицериды, эстерифицированный холестерин) жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин. Толщина наружной оболочки липопротеиновой частицы (ЛП-частица) составляет 2,1—2,2 нм, что соответствует половине толщины липидного бислоя клеточных мембран. Это позволило сделать заключение, что в плазменных липопротеинах наружная оболочка в отличие от клеточных мембран содержит липидный монослой. Фосфолипиды, а также неэсте-рифицированный холестерин (НЭХС) расположены в наружной оболочке таким образом, что полярные группы фиксированы наружу, а гидрофобные жирно-кислотные хвосты —внутрь частицы, причем какая-то часть этих хвостов даже погружена в липидное ядро. По всей вероятности, наружная оболочка липопротеинов представляет собой не гомогенный слой, а мозаичную поверхность с выступающими участками белка. Существует много различных схем строения ЛП-частицы. Предполагают, что входящие в ее состав белки занимают только часть наружной оболочки. Допускается, что часть белковой молекулы погружена в ЛП-частицу глубже, чем толщина ее наружной оболочки (рис. 17.4). Итак, плазменные ЛП представляют собой сложные надмолекулярные комплексы, в которых химические связи между компонентами комплекса носят нековалентный характер. Поэтому применительно к ним вместо слова молекула употребляют выражение частица . [c.574]

    Молочный жир состоит в основном из триглицеридов (98,2— 99,5% от общего содержания). Кроме того, в молочном жире содержатся фосфолипиды (лецитина — 0,08—0,4 %, кефалина — 0,07—0,4 %, сфингомиелина — 0,1 %), свободные жирные кислоты (0,02 %), а также веш,ества сопутствующие жирам — стерины (в основном холестерин), жирорастворимые витамины, углеводороды. [c.149]

    Важным процессом, влияющим на качество рыбы при хранении, является превращение липидов. В начальной фазе хранения липиды под действием липаз и лицитиназ подвергаются . дролизу с образованием в случае триглицеридов свободных рных кислот различной степени этерификации и глицерина, а случае фосфолипидов — жирных кислот, глицерина, фосфорной кислоты и аминоспирта (холина). Так. если в жире, выделенном из рыбы после 24 ч хранения, содержалось всего 1,1 % " зободных жирных кислот, то после 120 ч хранения при комнатной температуре — 2,5—8,1 %. Гидролиз липидов происходит,. отя и значительно медленнее, даже при глубоком замораживании (при —23 °С и ниже). В результате при длительном хранении мороженой рыбы содержание свободных жирных кислот может увеличиться в несколько раз. [c.177]

    В получаемом кормовом продукте содержатся многообразные питательные вещества, необходимые макроорганизму (белки — 52 %, жиры — до 18 %, углеводы — до 21 %, зольные элементы — 5 %). Белки включают такие аминокислоты, как аланин, аргинин, аспарагиновая кислота, валин, гистидин, глицин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, фенилаланин, цистин липиды представлены свободными жирными кислотами, триглицеридами, фосфолипидами (фосфатидилхолин, кефалин, сфингомиелин, лизоке-фалин) полисахариды состоят из глюканов, маннанов, глюкоманнанов, небольшого количества хитина. Дрожжевые клетки содержат следующие витамины биотин, инозин, пантотеновую кислоту, пиридоксин, рибофлавин, тиамин, холин, фолиевую кислоту, эргостерол (провитамин D2) [22]. [c.203]


Смотреть страницы где упоминается термин Фосфолипиды и триглицериды: [c.195]    [c.16]    [c.302]    [c.136]    [c.156]    [c.598]    [c.466]    [c.156]    [c.395]    [c.552]    [c.556]    [c.238]    [c.80]    [c.155]    [c.156]   
Смотреть главы в:

Биохимия растений -> Фосфолипиды и триглицериды




ПОИСК





Смотрите так же термины и статьи:

Триглицериды

Фосфолипиды



© 2024 chem21.info Реклама на сайте