Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидрирование и окисление спиртов

    Общим способом получения альдегидов и кетонов является дегидрирование (окисление) спиртов. При дегидрировании первичных спиртов получают альдегиды, а при дегидрировании вторичных спиртов - кетоны. Обычно дегидрирование протекает при нагревании (300 °С) над мелкораздробленной медью  [c.219]

    Все химические реакции, сопровождающиеся присоединением кислорода, называются окислительными. Они характеризуются не только присоединением кислорода, но и отдачей молекулами вещества атомов водорода, т. е. дегидрированием. Окисление спирта, например, возможно как путем присоединения кислорода, так и дегидрирования  [c.69]


    При производстве формальдегида и других карбонильных соединений окислительным дегидрированием спиртов одновременно происходят реакции эндотермического дегидрирования и экзотермического окисления спиртов  [c.324]

    При использовании метода окисления приходится работать при составе смеси за нижним пределом воспламенения 6% (об.) СНзОН, т. е. с весьма разбавленной паровоздушной смесью. При дегидрировании первичных спиртов, инициируемых кислородом, все побочные реакции с образованием окислов углерода, метана, муравьиной кислоты и воды, протекают не столь заметно. Это позволяет вести процесс при температуре 500—600 °С и большой скорости реакции с конверсией 85%. [c.324]

    Гидрирование кротонового альдегида. Этим методом получают большие количества к-бутанола. Сущность метода заключается в альдолизации ацетальдегида, дегидратации ацетальдоля в кротоновый альдегид и гидрировании последнего до к-бутанола. Исходным сырьем для процесса служит ацетальдегид, который может быть получен различными методами дегидрированием этилового спирта, гидратацией ацетилена на ртутных и нертутных катализаторах, прямым окислением этилена и др. [c.65]

    В отличие от формальдегида прямое дегидрирование высших спиртов (этилового — в ацетальдегид, изопропилового — в ацетон, е/пор-бутилового — в метилэтилкетон) дает лучшие результаты без стадии собственно окисления. [c.144]

    Ацетон получают при сухой перегонке дерева, окислением изопропилбензола до гидроперекиси с последующим гидролизом последней, дегидрированием изопропилового спирта и гидратацией ацети- [c.209]

    Дегидрирование и окисление спиртов. ....... [c.5]

    Дегидрирование и окисление спиртов [c.472]

    Все они являются жидкостями, ограниченно растворимыми в воде. Раньше эти альдегиды получали окислением или окислительным дегидрированием соответствующих спиртов, которые были мало доступны. Оксосинтез открыл наиболее экономичный путь для их получения. [c.536]

    Катализатор можно применять либо в виде металлической сетки, либо на инертном носителе. Окисление проводят при 500—700°, поскольку воздуха берут обычно меньше, чем требуется по уравнению (1), причем часть формальдегида образуется в результате дегидрирования метилового спирта по реакции [c.295]

    В патентной литературе чаще всего упоминаются два катализатора, применяемые для дегидрирования изопропилового спирта металлическая медь и окись цинка. Медь страдает тем недостатком, что ее активность уменьшается в процессе работы, а окись цинка вызывает в некоторой степени дегидратацию изопропилового спирта в пропилен. В промышленности сейчас, по-видимому, предпочитают производить ацетон дегидрированием, используя в качестве катализатора окись цинка, чистую или промотирован-ную. Одним из преимуществ этого метода по сравнению с методом окисления изопропилового спирта, о котором сообщается ниже, является то, что при дегидрировании в качестве побочного продукта получается чистый водород. В Германии производство ацетона осуществлялось дегидрированием изопропилового спирта, полученного из Сд—С4-олефинов, образующихся в процессе каталитического гидрирования окиси углерода при атмосферном давлении в жидкое топливо (гл. 3, стр. 62 и гл. 8, стр. 149). [c.315]


    Вторичные спирты, получаемые гидратацией С4—Сд-олефинов нормального строения (гл. 8), превращают в соответствующие им кетоны точно так же, как получают ацетон, а именно парофазным дегидрированием или каталитическим окислением воздухом. Дегидрирование втор-бутилового спирта в метилэтилкетон протекает при 350°, т. е. при несколько более низкой температуре, чем дегидрирование изопропилового спирта (380°). Этот метод считается лучшим, чем каталитическое окисление воздухом. [c.329]

    Этот же результат получается при каталитическом окислении спиртов, но дегидрирование имеет ряд важных преимуществ перед окислением. Каталитическое окисление происходит прп температуре 400—500°, что сопряжено с энергетическими затратами, сокращением жизни катализаторов и часто со снижением выходов из-за побочных и вторичных реакций дегидрирование идет при 200—300° и свободно от указанных недостатков. [c.282]

    К. образуются, например, при окислении нл1 дегидрировании вторичных спиртов  [c.125]

    В настояш,ее время ацетальдегид получают из ацетилена, дегидрированием этилового спирта и окислением нефтяных газов — пропана и бутанов. Последний способ является наиболее прогрессивным. [c.74]

    В промышленности формальдегид получают преимущественно двумя путями неполным окислением метана (или его гомологов) и окислительным дегидрированием метилового спирта. Формальдегид выпускают в полимерной форме (параформ по МРТУ 6-05-930—65) или в виде водного раствора — формалина. Последний, согласно ГОСТ 1625—61, изготавливают двух марок ФБМ—нестабилизированный и ФМ — стабилизированный метанолом. Основные технические требования к формалину приведены в табл. 39. В наибольших количествах формальдегид идет на производство полимеризационных и поликон-денсационных полимеров, смол, а также изопрена, фармацевтических препаратов и т. д. [c.168]

    Воззрение Палладина было развито Виландом, который показал, что окисление спирта в альдегид, а альдегида в кислоту возможно и в отсутствие свободного кислорода и что оно идет путем дегидрирования в присутствии мелкораздробленного палладия как катализатора. Долгое время полагали, что окисление спирта идет за счет непосредственного присоединения кислорода  [c.334]

    Какие продукты могут образоваться в результате окисления спиртов Какой вид реакций окисления аналогичен по своим результатам реакции дегидрирования спиртов  [c.541]

    Дегидрирование кислородсодержащих органических соединений по сути является их окислением. Например, в результате дегидрирования первичные спирты окисляются до альдегидов  [c.325]

    Некоторое количество ацетона получается окислением или дегидрированием изопропилового спирта. [c.138]

    Производство формальдегида из метанола. Каталитическое дегидрирование или каталитическое окисление спиртов в карбонильные соединения с тем же числом атомов углерода представляет общий метод получения альдегидов и кетонов. [c.303]

    В настоящее время ацетальдегид производят из ацетилена дегидрированием этилового спирта и окислением нефтяных газов (пропана и бутанов). Наиболее прогрессивным методом нроизводства ацетальдегида является окисление пропана и бутанов, подробно описанное выше. По этому методу получают наиболее дешевый ацетальдегид. Образующиеся одновременно с ацетальдегидом формальдегид, метиловый спирт и другие продукты позволяют создать ряд производств (например, пентаэритрита, акролеина и др.), почти не требующих привозного сырья. [c.314]

    Секция разделения и очистки. Хотя сырой продукт процесса представляет сравнительно сложную смесь, основные комноненты этой смеси, т. е. альдегиды и спирты, содержащие на один атом углерода больше, чем исходный олефин, обычно легко удается отделить от более легких и более тяжелых побочных продуктов и непрореагировавшего сырья. Значительно ббльшие трудности представляет разделение индивидуальных изомеров, образующих основной продукт синтеза. Если исходить из олефинового сырья высокой чистоты, то разделение продуктов синтеза, содержащих 3—5 углеродных атома в молекуле, не представляет особых трудностей. Если же исходное сырье представляет смесь изомеров или если при оксосинтезе исходить из высокомолекулярных олефинов, то возникают настолько значительные трудности разделения, что целесообразность производства каких-либо индивидуальных продуктов практически исключается поэтому обычно оксосинтезом высших олефинов получают смеси изомеров. Это особенно относится к альдегидам вследствие их высокой реакционной способности при температуре перегонки. Разумеется, чистые высокомолекулярные альдегиды можно получать окислением или дегидрированием индивидуальных спиртов. [c.275]

    Первые два метода для промышленного применения не приемлемы из-за дефицитности сырья. Что касается третьего метода, то недостатком его является побочная реакция, обусловливающая дальнейшее окисление альдегида в изомасляную кислоту и этерификация ее изобутиловым спиртом, не вошедшим в реакцию. В результате этой реакции образуется в значительном количестве изобутиловый эфир масляной кислоты, что значительно снижает выход изомасляного альдегида (около 40%). Кроме того, бихромат калия также дорог и дефицитен [55]. Наилучшую перспективу для промышленного применения имеет метод синтеза изомасляного альдегида путем каталитического дегидрирования изобутилового спирта кислородом воздуха на медном или серебряном катализаторе при температуре 230— 300° С с выходом 80—90% [56]. В дальнейшем было показано [55], что серебряный катализатор, нанесенный на пемзу, при температуре 500— 600° С более эффективен по сравнению с медным. По-видимому, вопрос [c.142]


    Т. е. альдегид — это дегидрированный (окисленный) спирт. Отсюда и произошло название альдегид — от соединения двух сокращенных латинских слов al ohol dehydrogenatus (дегидрированный спирт). [c.122]

    В связи с тем, что в последние годы разработано несколько весьма эффективных способов получения ацетальдегида (окисление этилена, дегидрирование этилового спирта), этот продукт стал рассматриваться как экономичное сырье для последующих синтезов. Одним из путей получения более высокомолекулярных продуктов на основе ацетальдегида является его альдокротонизация с последующей переработкой кротонового альдегида. Далее кротоновый альдегид может быть прогидрирован до масляного альдегида, используемого при получении 2-этилгексанола. [c.127]

    Так как в настоящее время результаты прямого окисления углеводородов неудовлетворительны (низкие выходы), большую часть формальдегида получают дегидрированием метилового спирта или при сухой перегонке дерева. Метиловый спирт можно дегидрировать (эндотермически) или окислить (экзотермически) в формальдегид. В промышленности применяют реакцию окисления  [c.144]

    Совмещенное дегидрирование и окисление метанола. Дегидрирование первичных спиртов, в том числе метанола, менее благо-пэиятно по сравнению с вторичными спиртами по условиям рав-нэвесия и селективности реакции. По этой причине, а также с целью устранения эндотермичности процесса осуществили совмещенное дегидрирование и окисление метанола  [c.474]

    Окислительное дегидрирование проводят при недостатке кислорода, поэтому глубокое окисление не получает значительного развития. В то же время само дегидрирование, инициируемое кислородом, протекает быстрее, и все ранее упомянутые побочные реакции не так заметны, как при дегидрировании первичных спиртов. Это позволяет работать при более высокой температуре (500—600°С), большой скорости реакции и времени контакта 0,01—0 03 с. Выход формальдегида на пропущенное сырье достигает 80—85% при степени конверсии метанола 85—90%. Замечено, что добавление воды к исходному метанолу повышает выход и степень конверсии, по-видимому, в результате разложения ацеталей. Р атализаторами синтеза формальдегида этим методом служит металлическая медь (в виде сетки или стружек) или серебро, осажденное на пемзе. Последний катализатор оказался более эффективным и широко применяется в промышленности. [c.475]

    Г Реакторы со сплошным слоем катализатора, несекционированные (так называемые адиабатические) широко используются в нефтехимических произв6 (-ствах. В таких аппаратах проводят как реакции в кинетической или переходной областях (например, гидрокрекинг, риформинг — табл. 3.2, изомеризация парафинов, прямая гидратация этилена, дегидрирование этилбензола в стирол и изопропилбензола в а-метилстирол), так и реакция в диффузионной области (например, окисление спиртов в альдегиды и кётоны). [c.125]

    Для синтеза высших альдегидов можно использовать самые разнообразные методы. Высшие альдегиды можно синтезировать из низших с помощью альдольной конденсации или получать их из олефинов, содержащих на один атом углерода меньше, использовав для этого оксо-синтез — каталитическую гидроконденсацию с окисью углерода (гл. 11, стр. 194). Высшие альдегиды могут быть также получены из углеродных соединений с тем же числом атомов углерода, например каталитическим окислением или дегидрированием первичных спиртов, а также изомеризацией окисей олефинов (гл. 19, стр. 373). Некоторые из низших альдегидов нормального строения образуются в качестве побочных продуктов в процессе хайдрокол (гл. 3, стр. 64) из окиси углерода и водорода и при регулируемом окислении воздухом пропана и н-бутана (гл. 4, стр. 72). [c.305]

    Один из двух ненасыщенных альдегидов, изомерных кротоновому, — винилацетальдегид СН2=СНСН2СНО — не получен. Второй изомер — метакролеин СН2=С(СНд)СНО — получают каталитическим окислением (дегидрированием) металлилового спирта воздухом или дегидратацией /3-ме-тилглицерина  [c.311]

    Разработанные металлоуглеродные волокна имеют следующие характеристики плотность - 1.6-2.2 г/см , прочность на разрыв - 200 - 1000 МПа, электропроводность - 10 -Ю Ом м, удельную намагниченность - 15 - 50 Гс см /г, обладают высокой адсорбционно-каталитической активностью в реакциях превращения циклических углеводородов, дегидрирования вторичных спиртов, окисления Нг, СО, хемосорбируют H2S, NHj. повышают физико-механические показатели композиционньге материалов в 1,2-2 раза. [c.182]

    При пропускании паров спирта над нагретым катализатором мелкораздробленная медь или железо) происходит окисление спиртов (бтщепляются атомы водорода от спиртового атома углерода) — их дегидрирование из первичных спиртов получаются альдегиды, например уксусный альдегид [c.331]

    Как видно, при окислении или дегидрировании первичного спирта получается альдегид, вторичмого спирта — кетон. Атом углерода карбонильной группы ал1)догидов связан с одним атомом водорода и с одним атомом углерод (радикалом). Атом углерода карбонильной группы кстонов связан с двумя атомами углерода (с двумя радикалами). [c.308]

    Реакции ь еполного окисления спиртов по своим результатам аналогичны реакциям дегидрирования  [c.534]

    Получение. 1. Кетокы образуются при окислении или каталитическом дегидрировании вторичных спиртов, наиример  [c.394]

    Хорошие результаты дает каталитическое дегидрирование вторичных спиртов в паровой фауе на катализаторах, подобных применяемым для дегидрирования первичных спиртов, В этом случае реакция протекает еще легче, так как из кетонов образуется меньше побочных продуктов. Хард и сотр. [3381 получили из циклогексанола с 60%-ним выходом циклогексапон при помощи меднохромового катализатора Ад-кинса [338]. Возможно также дегидрирование вторичных спиртов в жидкой фазе. ТС качестве катализатора наряду с другими можно использовать никель Ренея. Окисление целесообразно проводить в присутствии акцептора водорода, например цикло-гексанона. Для проведения реакции кратковременно нагревают смесь спирта, растворителя, катализатора и акцептора водорода [339]. [c.309]

    Эта реакция происходит при высоком давлении для первичных Спиртов, не имеющих разветвления в а-положении, поскольку промежуточным соединением, получающимся из соответствующего альдоля, является, по-видимому, а,р-ненасыщенный альдегид. В тех случаях, однако, когда в одном из спиртов отсутствует разветвление у а-углеродного атома, может происходить смешанная конденсация Гербе. В результате успешно проведенной реакции из первичного спирта с неразветвленной цепью получают также карбоновую кислоту с тем же числом атомов углерода и исходный спирт. Из-за указанных причин этот метод синтеза находит лишь ограниченное применение. Добавление небольших количеств медной бронзы подавляет окисление спирта в соответствующую кислоту в присутствии алкоголята натрия. В литературе имеются сведения, что добавление примерно 0,5% соли трехвалентного железа более чем вдвое ускоряет реакцию Гербе [261. Однако наиболее эффективны для ускорения реакции катализаторы дегидрирования, такие, как никель Ренея или палладий [27]. Выходы редко превышают 70%, если считать, что 3 моля более низкомолекулярного спирта дают 1 моль более высокомолекулярного спирта [28]. [c.276]

    Этот способ экономически выгоден. Относительная себестоимость ацетона, полученного дегидрированием изопропилового спирта 100%, кумолпероксидным способом 50—60%, прямым окислением пропилена — 35 %. [c.70]


Смотреть страницы где упоминается термин Дегидрирование и окисление спиртов: [c.124]    [c.377]    [c.472]    [c.182]    [c.362]    [c.303]    [c.254]   
Смотреть главы в:

Химия и технология основного органического и нефтехимического синтеза -> Дегидрирование и окисление спиртов




ПОИСК





Смотрите так же термины и статьи:

Окисление дегидрированием

Окисление спиртов



© 2024 chem21.info Реклама на сайте