Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительно-восстановительные реакции в природе

    Окислительно-восстановительные реакции играют важную роль в природе и технике. В качестве примеров окислительно-восстано-вительных процессов, протекающих в природных биологических системах, можно привести реакцию фотосинтеза у растений и процессы дыхания у животных и человека. Процессы горения топлива, протекающие в топках парогенераторов тепловых электростанций и в двигателях внутреннего сгорания, являются примером окислительновосстановительных реакций. [c.182]


    Применение окислителей. Существует большой выбор соединений, применяемых в качестве окислителей перманганат калия, хромовый ангидрид и хромовая смесь, азотная кислота, двуокись свинца и двуокись селена, тетраацетат свинца, перекись водорода, хлорное железо и многие другие. Направление и интенсивность действия окислителя на органические соединения зависят от характера окисляемого вещества, природы окислителя, температуры, pH среды и т. д. Так, например, при окислении анилина хромовой кислотой образуется хинон, перманганатом калия в кислой среде — анилиновый черный, перманганатом калия в нейтральной или щелочной среде — азобензол и нитробензол. Окисление проводится в большинстве случаев в водной или уксуснокислой среде. При определении коэффициентов в уравнениях окислительно-восстановительных реакций удобно пользоваться расчетной схемой, основанной на формальном представлении о степени окисления атомов, входящих в состав соединения. [c.129]

    Межмолекулярные (межатомные) окислительно-восстановительные реакции характеризуются тем, что атомы, изменяющие свои степени окисления, находятся в разных по своей химической природе атомных или молекулярных частицах. Другими словами, одни вещества (простые или сложные), вступающие в химические реакции, являются окислителями, а другие — восстановителями. Межмолекулярные процессы составляют наиболее обширную группу окислительно-восстановительных реакций. Примерами могут служить реакции с участием простых и сложных веществ, а также различных атомных и молекулярных частиц (радикалов, ионов и ион-радикалов)  [c.77]

    Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы. [c.226]


    Составление уравнений реакций. При записи окислительно-восстановительных реакций обычно показывают, сколько электронов отдано окислителем и сколько приобретено восстановителем. Условно принято окисление отождествлять с отдачей электронов, а восстановление — с приобретением электронов, т. е. не принимается во внимание строение частиц, природа химической связи в них и механизм протекающего процесса. Ради [c.203]

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]

    При записи окислительно-восстановительных реакций обычно показывают, сколько электронов отдано окислителем и сколько приобретено восстановителем. Условно принято окисление отождествлять с отдачей электронов, а восстановление — с приобретением электронов, т. е. не принимаются во внимание строение частиц, природа химической связи в них и механизм протекающего процесса. Ради упрощения записи обычно указывают степени окисления лишь тех атомов, у которых она меняется. Условным является и приписывание окислительно- [c.92]

    Для разработки научных основ приготовления катализаторов высокой активности прежде всего необходимо выявить природу каталитически активных участков его поверхности. Нам представляется, что в гетерогенном катализе окислительно-восстановительных реакций природа каталитически активных участков может быть однотипной. Современные представления о физике и химии твердого состояния и, в частности, металлов и полупроводников позволяют высказать предположение, что каталитически активными участками являются окислительно-восстановительные микросистемы, например контакт металла с твердым раствором его ионов. Если в твердом растворе имеется достаточная концентрация катионов разной валентности, то катализатор будет иметь соответствующий окислительновосстановительный потенциал. Следует указать, что в этом случае гетерогенный катализ будет осуществляться в основном катионами переменной валентности по той же схеме, как и в гомогенном катализе в жидких растворах. Поэтому в указанном смысле нет принципиального различия между гомогенным и гетерогенным катализом окислительно-восстановительных реакций. Различие будет заключаться в том, что в жидких растворах катионы подвижны (например, Fe и Fe" ) и передача электронов возможна при их сталкивании друг с другом и с реагентами [7], тогда как в твердых растворах катионы пространственно фиксированы и передача электронов возможна не только при непосредственном контакте с реагентами, но и через кристаллическую решетку твердой фазы. [c.101]

    Для устранения этого противоречия делались попытки ввести понятие пристеночного тока , причем даже предполагалось электризацию рассматривать вне связи с двойным слоем. ОднакО природа пристеночного тока в этих работах оставалась неопределенной. Согласно современной теории электризации, источник пристеночного тока — окислительно-восстановительные реакции на стенках трубопровода. В соответствии с этим, предположив для определенности, что на стенке адсорбируются отрицательные ионы, механизм электризации при движении жидкости в колонне насосно-компрессорных труб можно описать следующим образом. [c.116]

    Железо входит составной частью во многие биосистемы, в частности гемопротеины и системы небелковой природы (например, содержащиеся в микроорганизмах). В химии жизненных процессов существенную роль играют окислительно-восстановительные реакции порфириновых комплексов железа, которое может в них находиться в состояниях Fe(II) и Ре(III). В Зтих реакциях участвуют как электроны лигандов (их я-орбиталей), так и желе- [c.124]

    Если же соединение или простое вещество содержит атомы элемента в промежуточной степени окисления, то оно может вести себя двояко оно может и приобретать и терять электроны. В первом случае оно ведет себя как окислитель, во втором — как восстановитель. Его поведение определяется химической природой партнера, с которым оно взаимодействует, условиями и характером среды, в которой протекает окислительно-восстановительная реакция. [c.123]


    Особая трудность описания механизма окислительно-восстановительных реакций состоит в том, что путь превращения какого-либо вещества зависит от природы другого участника реакции, для которого, в свою очередь, путь превращения зависит от природы первого вещества. [c.335]

    Встречаются комплексы, в которых окисляется как центральный ион, так и лиганды независимо друг от друга. Так, например, с помощью потенциометрического титрования установлено, что при окислении оксалатов платины (И) получаются два потенциала один из них отвечает окислению платины, а другой — оксалат-ионам. Таким образом, течение окислительно-восстановительных реакций комплексных соединений зависит от природы связи различных лигандов с центральным ионом. [c.136]

    Нужно вывести общее уравнение окислительно-восстановительных реакций, зная природу реагентов и продуктов, образующихся в ходе реакции. Любая химическая реакция должна удовлетворять законам сохранения массы и электрических зарядов. [c.281]

    Можно указать также еще ряд явлений неорганической химии, таких, как гидролиз солей, окислительно-восстановительные реакции, растворение аммиака, гидразина, гидроксиламина в воде, обычная трактовка которых не только далека от совершенства, но порой противоречит как опытным данным, так и современным теоретическим представлениям о природе молекул. [c.6]

    Значительная часть свойств координационных соединений обус ловлена электронной конфигурацией центрального иона, донор ными и акцепторными свойствами лигандов и природой связи между лигандом и центральным ионом. По этой причине большее место в этой главе будет уделено этим аспектам химии координа ционных соединений, нежели вопросам стереохимии, типам изо мерин, реакциям замещения и окислительно-восстановительным реакциям. Здесь не будет рассмотрено и возрастающее значение координационных соединении в области аналитической химии, биохимии и электрохимии. Для детального изучения этих и других аспектов химии координационных соединений полезны многие прекрасные руководства . [c.232]

    Окислительно-восстановительные потенциалы редокс-пар и, следовательно, потенциалы окислительно-восстановительных реакций зависят от природы реакции (т. е. от природы реагентов и растворителя), концентраций реагентов, pH среды, температуры, присутствия других веществ в растворе. От тех же факторов зависит и направление протекания окислительно-восстановительной реакции. [c.162]

    Окисление — восстановление один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. [c.75]

    Течение окислительно-восстановительных реакций комплексных соединений зависит от природы связи различных лигандов с центральным ионом. [c.166]

    I. Предмет электрохимии и ее задачи. Вся область химии пронизана явлениями, имеющими электрическую природу. Сюда относятся такие важнейшие процессы, как образование внутримолекулярных (валентных) связей, окислительно-восстановительные реакции, явления гидратации, ионизации в растворах, ассоциация, комплексообразование и т. д. Все это говорит о весьма широкой связи химических явлений с явлениями электрическими. [c.315]

    Классификация хроматографических методов анализа. Разнообразие хроматографических методов, различающихся по физико-химической основе и технике выполнения анализа, не позволяет классифицировать их по какому-либо одному критерию. Наиболее важные показатели, отражающие физико-химическую сущность и особенности техники анализа, следующие агрегатное состояние разделяемых веществ — газ (пар) или жидкость (раствор) природа сорбента — твердое вещество или жидкость характер взаимодействия между сорбентом и разделяемыми веществами — распределение молекул или ионов менаду двумя фазами, образование координационных соединений в фазе или на поверхности сорбента, протекание окислительно-восстановительных реакций при контакте разделяемых веществ с сорбентом техника выполнения анализа — в колонке, капилляре, на бумаге, в тонком слое сорбента. [c.7]

    Окислительно-восстановительные реакции крайне многочисленны и многообразны. Они постоянно происходят в природе в виде процессов, поддерживающих жизнедеятельность организмов, в виде горения, гниения, коррозии и т. п. Получение металлов из руд, производство лекарственных препаратов, выработка энергии и многие другие задачи производительной деятельности человека решаются на основе сознательного использования реакций окисления—восстановления. [c.230]

    Окислительно-восстановительные потенциалы редокс-пар зависят от природы участников окислительно-восстановительной реакции и растворителя, температуры, давления (в основном тогда, когда хотя бы один и реагентов — газ), присутствия посторонних электролитов и других веществ. [c.153]

    Как следует из рассмотренных примеров, на направление и скорость окислительно-восстановительных реакций влияют многие факторы природа реагирующих веществ, характер среды, концентрация, температура, катализаторы и некоторые другие. [c.223]

    Окислительно-восстановительные реакции являются самыми распространенными и играют большую роль в природе и технике их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе, они лежат в основе металлургических процессов, с их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные химические продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в химических источниках тока — гальванических элементах и аккумуляторах. Не меньшую роль играют эти реакции и в биологических процессах фотосинтез, дыхание, обмен веществ — все эти процессы основаны на окислительно-восстановительных реакциях. [c.154]

    Окислительно-восстановительные реакции являются самыми распространенными и играют большую роль в природе п технике. [c.137]

    Природа электрода, так же как и сгепень развития его поверхности, играет важную роль в кинетике процессов электрохимического восстановления и окисления особенно отчетливо это проявляется в случае сложных окислительно-восстановительных реакций. Например, при восстановлении азотной кислоты на губчатой меди получается почти исключительно аммиак, а на амальгамированном свинце — преимущественно гидроксиламин. Другим примером влияния материала электрода на процесс электровосстановления может служить реакция восстановления ацетона. В результате этого процесса получаются два основных конечных продукта — изопропиловый спирт СН3СНСН3 и пннакон (СНзСОНСНз)2. [c.432]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Что вызывает протекание окислительно-восстановительных реакций Из-за той легкости, с которой многие элементы-металлы вступак т во взаимодействие с другими элементами, они находятся в природе в виде ионов (составных частей минералов) и образуют ионные вещества. Получение металла из его минерала обычно требует затрат энергии, а также ист1эчника электронов или, иначе говоря, восстановителя. В табл. II.8 показаны применяемые в настоящее время методы восстановления, восстановители и источники энергии. Рассмотрим их подробнее. [c.152]

    Характе )ной особенностью почвенных условий является необрати.мость большинства реакций окисления и восстановления, протекающих в почве. Обратимые реакции, которые полностью подчиняются всем рассмотренным выше теоретическим положениям, свойственны только некоторым окислитсльно-восста-новительным системам — окислению и восстановлению железа (ре +5а ре +), марганца (Мп + =г2 Мп2+), азота (N +5= N + ) и др. С другой стороны, в почве протекает большое число окислительно-восстановительных реакций биохимической природы. [c.260]

    Метод полуреакций (ионно-электронного баланса). В методе полуреакцпй составляют ионные уравнения для окисления восстановителя и восстановления окпслп-теля с заключительным суммированием этих уравнений в оби ее ионное уравнение. Физическая природа рассматриваемых процессов будет гюиятна, если мы учтем, что каждая окислительно-восстановительная реакция можег быть использована для получения электрического тока при ее проведении в гальваническом элементе (в полуэлементах) (рнс. 6.1). [c.146]

    Возможц ость взаимодействия реагирующих веществ в окислительно-восстановительной реакции определяется также устойчивостью и прочностью возникающих химических связей в образующихся соединениях, что зависит не только от природы компонентов, входящих в данное вещество, но и от внешних условий и от среды, в которой протекает процесс. [c.147]

    Существуют такие вещества, которые в одних реакциях могут бьпь окислителями, а в других—восстановителями, в зависимости от природы партнера-реагента и условий протекания окислительно-восстановительной реакции. Такие вещества иногда называют редокс-амфотерными. [c.147]

    Возможность протекания любой окислительно-восстановительной реакции в реальных условиях обусловлена рядом причин температурой, природой окислителя и восстановителя, pH среды, концентрэдией веществ, участвующих в реакции, и т. д. Учесть все эти факторы [c.204]

    Межмолекулярные (межионные) реакции. В этом случае элек-троноактивные частицы имеют различную химическую природу и находятся в разных веществах (в разных молекулах или ионах). К этому типу относятся все ранее рассмотренные окислительно-восстановительные реакции. [c.293]

    При реакции происходит перемеще[[ие электронов от восстановителя к окислителю, т. к. в восстановителе они связаны с ядром слабее, чем в окислителе. Следовательно, предсказание осуществления окислительно-восстановительной реакции возможно на основе знания энергетических уровней электронов в исходных веществах. Энергетические уровни электронов у восстановителя и окислителя зависят от их природы, состояния и окружающей среды. Они характеризуются потенциалами ионизации, сродством к электрону и окислительно-восстановительным потенциалам. Рассмотрим с этих позиций в качестве примера взаимодействие магпия с хлором и определим направление этой окислительно-восстановительной реакции. Магний—элемент ПА группа периодической системы, активный металл, сильный восстановитель. Распределение электронов в атоме следующее—1 5 , 28 2р 35 . Энергия возбуждения одного из двух внешних электронов мала и полностью перекрывается энергией образования химических связей. Поэтому один из электронов 35—подуровня может перейти на Зр — подуровень. В этом случае электронная структура атома будет иметь два неспаренных электрона, и, следовательно,он может проявлять валентность, равную двум. [c.32]

    Большинство химических реакций, протекаюи их в приборах, заводских реакторах, живых организмах и в природе, — это реакции окисления-восстановления. Такие реакции широко используются в аналитической химии для открытия, разделения и количественного определения веш,еств. Сущность окислительно-восстановительных реакций заключается в переходе некоторого числа электронов от восстановителя к окислителю. Процессы растворения металлов в воде, растворах кислот, оснований и солей также являются окислительно-восстановительными. [c.90]

    Эффективность окислительных или восстановительных свойств данного вещества зависит от его природы, от условий протекания окислительно-восстановительной реакции и определяется величиной электродного потенциала редокс-пары (окислительно-восстановительного потенциала редокс-пары, редокс-потеьциала). Этот потенциал эксие- [c.147]


Смотреть страницы где упоминается термин Окислительно-восстановительные реакции в природе: [c.97]    [c.218]    [c.410]    [c.135]    [c.356]   
Смотреть главы в:

Основы органической химии -> Окислительно-восстановительные реакции в природе




ПОИСК





Смотрите так же термины и статьи:

Окислительно-восстановительные реакци

Окислительно-восстановительные реакции



© 2025 chem21.info Реклама на сайте