Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горение виды и условия

    Более распространенным является горение в условиях крупномасштабной турбулентности (/>6). Под действием турбулентности этого вида фронт пламени начинает деформироваться. По мере увеличения пульсационных составляющих скорости (да фронт пламени все более искривляется (см. рис, 76, а) и в конце концов разрывается. При сильной крупномасштабной турбулентности пульсирующие объемы горящего газа и свежей смеси двигаются вперемежку (см. рис. 76, б) и несгоревшая смесь постепенно сгорает. В этих условиях резко возрастает поверхность сгорания, которую уже нельзя назвать фронтом, поскольку она распределена по всему объему горящей смеси и в итоге скорость распространения пламени увеличивается. Зона горения в этом случае состоит как бы из множества очагов горения. Основываясь на упрощающем геометрическом представлении, а именно на представлении о мгновенной поверхности пламени как составленной из множества конических поверхностей, возможно получить следующее выражение для скорости турбулентного распространения пламени (для да < ид)  [c.142]


    Для рассматриваемой схемы характерен также чрезмерно укороченный верхний участок потока, что, как указывалось, может явиться причиной выноса наиболее тонких фракций пыли, которые при неблагоприятных режимных условиях и свойствах горючей массы могут оказаться вне зоны воспламенения и попасть в унос в нетронутом процессом горения виде. Впрочем, и при второй схеме (фиг. 16-2,6) наблюдалось аналогичное явление в тех случаях, когда горелки ставились в два ряда при явно укороченном пространстве для развития верхних факелов источником уноса становилась верхняя, периферийная часть потоков, идущих от верхнего ряда горелок. [c.165]

    Очень многие факторы определяют скорость процесса горения вид и агрегатное состояние сжигаемого топлива (жидкое, газообразное, твердое) соотношение топлива и окислителя условия смесеобразования состояние поверхности топлива температура процесса горения интенсивность удаления продуктов сгорания вид окислителя (кислород воздуха или чистый кислород) конструкции агрегатов, в которых осуществляется сгорание, и др. [c.13]

    Условия образования токсичных компонентов второй группы приблизительно одинаковы для всех видов топлив. Реакция окисления азота в пламени (как и любая другая химическая реакция - см. раздел 1.2.7) ускоряется с повышением температуры горения. Поэтому условия оптимальные с точки зрения полноты сгорания топлива - минимально необходимый избыток воздуха и его интенсивное перемешивание с топливом - приводят к увеличению скорости реакции образования оксидов азота и их концентраций в продуктах сгорания. Попытки снижения концентраций N0 посредством затягивания процесса перемешивания и снижения за счет этого температуры зоны реакции (фронта горения) ведут к возрастанию величины химического недожога. Поэтому при сжигании всех видов топлив в одинаковых по температуре зоны горения условиях образуется приблизительно одинаковое количество токсичных компонентов второй группы. [c.88]

    В структурном виде дальнейшее развитие горения в условиях высокотемпературной области может протекать по следующей схеме учитывая шестигранную кольчатую структуру графита, при его горении можно ожидать поверхностный углерод-кислородный комплекс [c.188]

    Каждому виду жидких углеводородов (нефтепродукт, сжиженный газ) соответствуют определенные условия горения. Поэтому не может быть единого метода тушения всех жидких углеводородов. Применение единого метода не только неверно, но и опасно. Свойства жидких углеводородов определяют выбор огнетушащего вещества и способа тушения. Эффективная борьба с пожарами включает два этапа ограничение распространения огня и его тушение. Важное значение как для предотвращения распространения огня, так и для тушения его имеют правильное распределение потоков охлаждающей жидкости, обеспечение необходимого количества воды и доставки ее к очагу пожара. Важное значение имеет также наличие и техническое состояние дренажной системы, предотвращающей попадание потоков горящих жидких нефтепродуктов к другим объектам за пределами очага пожара. [c.144]


    Обезвреживание солесодержащих сточных вод, количество которых на нефтеперерабатывающих и нефтехимических предприятиях составляет 5—10%, вызывает наибольшие технические и экономические трудности. Электродиализ, обратный осмос, ионный обмен пока применяют только для извлечения отдельных видов специфических загрязнений и глубокой доочистки сточных вод с умеренным содержанием солей. Упаривание иод вакуумом используют в основном для опреснения морской воды. При обессоливании сточных вод оборудование работает в более тял<елых условиях, чем при опреснении морской воды, так как упаривание надо доводить до 90—95% по сравнению с 40—50% при опреснении морской воды. Обезвреживание сточных вод проводят в два этапа на первом их упаривают под вакуумом до концентрации солей около 30 г/л (кратность упаривания примерно 12), на второй упаривают рассол с помощью аппаратов погружного горения до концентрации 250 г/л. После лого рассол обезвоживают в аппаратах кипящего слоя до остаточной влажности 2%. Водные конденсаты используют для подпитки котлов ТЭЦ, соли подвергают захоронению. [c.109]

    Хотя для описания кинетики цепных разветвленных взрывных реакций есть различные механизмы, совершенно отличные от чисто тепловых взрывов, формально зависимости пределов воспламенения от температуры совпадают. Механизм распространения разветвленного взрыва в виде медленной волны горения должен быть связан скорее о диффузией радикалов, ведущих цепь, а не с диффузией тепла. Зельдович [54] показал, что в первом приближении можно считать, что градиенты концентрации и температуры пропорциональны друг другу. В этих условиях формальные уравнения для распространения волны будут одинаковы для обоих механизмов взрыва и совершенно независимо от цепного механизма градиенты концентрации и температур в пламени будут пропорциональны друг другу во всех точках. С физической точки зрения это вполне вероятный результат, потому что наиболее резкие перепады температур должны проявляться там, где скорость реакции наибольшая, что в свою очередь вызывает образование максимальных концентраций продуктов. [c.399]

    Скорость выгорания кокса с поверхности катализаторов при прочих равных условиях зависит от особенностей отложения кокса в стадии крекинга и внутренней поровой структуры частнц. Поэтому регенерационную характеристику катализаторов оценивают в одинаковых условиях закоксовывания и при двух режимах горения кокса—диффузионном и кинетическом. Полученные результаты выражают в виде зависимости приведенной интенсивности горения кокса (в граммах за 1 ч из 1 тг катализатора) от температуры регенерации или других факторов, определяющих скорость горения. [c.169]

    Прн пробое электропроводность газового промежутка становится очень большой, и напряжение на электродах резко снижается до так называемого напряжения горения разряда. В зависимости от ряда условии самостоятельный разряд может характеризоваться различным внешним видом, характером элементарных процессов и распределением напряженности поля вдоль оси разряда. Основными формами самостоятельного разряда являются искровой, тлеющий и дуговой. [c.239]

    Смесь горючего исходного материала с окислителем в определенном соотношении, необходимом для осуществления процесса горения с учетом получения заданного продукта, называется горючей смесью. Полученные продукты при осуществлении этих окислительных реакций называются продуктами сгорания. Системная теория печей рассматривает проблемы промышленного оформления процессов безопасного сжигания исходных горючих материалов на базе современной теории горения. Она рассматривает вопросы создания с помощью аэродинамических приемов оптимальных условий для управления процессами сжигания с заданной скоростью, температурой и с получением пламени необходимой геометрической формы, определяющих способ взаимодействия горючего и окислителя и обусловливающих вид процесса сжигания. Она рассматривает возникающие взаимосвязи при горении исходных материалов, совместимость протекания реакции горения топлива с целевыми химическими реакциями в одном объеме, особенности химического взаимодействия между реагентами при химико-технологическом сжигании. Протекание процесса сжигания исходных горючих материалов рассматривается совместно с теплотехническими процессами. Для протекания реакции горения исходных горючих материалов необходимы смесеобразование, организация воспламенения смеси, обеспечение условий распространения пламени и устойчивости горения. [c.29]


    Как было показано ранее, условия сжигания газа и жидкого топлива различны, различны длины пламени горения и их диаметры, различны давления воздуха перед горелкой и форсункой. Конфигурации рабочей и топочной камер не соответствуют переходу с одного вида топлива на другой. [c.158]

    Реакции окисления и горения этилена идут в промышленных условиях в кинетической области. Кинетические уравнения имеют вид [c.49]

    УСЛОВИЯ и виды ГОРЕНИЯ [c.180]

    В термохимических расчетах используют термохимические уравнения. В них указывают тепловой эффект реакции, а также фазовое состояние и полиморфную модификацию реагирующих и образующихся веществ г — газовое, ж — жидкое, к — кристаллическое, т — твердое, р — растворенное и др. Термохимическое уравнение горения ромбической серы в стандартных условиях имеет вид  [c.114]

    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    Одной из причин нарушения устойчивости процесса горения являются условия протекания сложных химических реакций. Химические реакции в некотором диапазоне переменных приводят к установлению автоколебательного процесса. Различаются в основном колебания двух видов чисто кинетические колебания, связанные только с изменением концентрации промежуточных продуктов реакции, и термокинетические колебания, связанные одновременно как с кинетикой реакции, так и с выделением и отводом тепла. Термокинетические колебания, по всей вероятности, зависят от скорости выделения тепла в единице объема, т. е. от теплонапря-женности химической реакции. Кроме кинетических и термокинетических колебаний, возможны еще релаксационные колебания, возникающие при определенной скорости подачи топливной смеси в топочную камеру. [c.154]

    Под диффузионным, или цепным, распространением пламени мы будем подразумевать здесь процесс, когда распространение пламени связано не с передачей тепла, но с диффузией активного продукта автокаталитической (цепной) реакции. Это понятие не следует смешивать с применяемым иногда в литературе термином диффузионное горение , под которым подразумевается случай, когда компоненты горючей смеси (топливо и воздзгх) предварительно не смешаны и скорость горения определяется процессом их взаимной диффузии. В случае диффузионного, или цепного, горения вид функции Q (а ) в (VIII,3) определяется кинетикой реакции в общем о нем ничего сказать нельзя. Принципиально возможны самые различные виды функции Q (х), но аналитическое решение уравнения (VIII,3) и нахождение значения р., при котором это решение удовлетворяет граничным условиям, практически не удаются. [c.367]

    Если на пути такого потока установить препятствие, образую-ш ее местные завихрения и снижаюш,ее скорости, то это приведет к стабилизации горения, при условии что препятствие расположено в той части, где смесь лежит в концентрационных границах зажигания. Следует иметь в виду, что нри турбулентном диффузионном горении в условиях атмосферы без регулируемого притока воздуха к факелу часто наблюдается неполнота сгорания даже при наличии устойчивого фронта пламени. [c.46]

    Промышленное оформление процесса. На современных высокопроизводительных этиленовых установках (ЭП —300 и ЭП —450 производительностью соогвет — ственпо 300 и 450 тыс.т этилена н год) применяют мощные пиролизные печи, специально скопструи — рованные для условий интенсивного высокотемпературного нагрева (до 870—920 °С) с временем пребывания сырья в реакционных змеевиках в пределах 0,01 —0,1 с. Они зарактеризуются вертикальным расположением труб радиан — тных змеевиков в виде однорядного экрана с двухсторонним облучением панельными горелками беспламенного горения (или с факельными горелками с настильным пламенем). Проход по трубам радиантного змеевика организован в виде нескольких (от 4 до 12) параллельных потоков (секций). Каждая секция состоит из нескольких жаропрочных труб (от 3 до 12) длиной от 6 до 16 м и диаметром 75—150 мм. Мощность одной пиролизной печи достигает до 50 тыс.т этилена в год. Схема одной из современных пиролизных печей представлена на рис.7.9. [c.68]

    Результаты измерений в виде локальных значений критерия Ыи,8с в зависимости от места на поверхности шара представлены на рис. IV. 22 в полярных координатах. Отложенные значения представляют собой среднее арифметическое 4—5 опытов, проведенных в одинаковых условиях. Графики указывают на большую неравномерность в значениях локальных коэффициентов массоотдачи по поверхности шара. В точках контакта эти значения минимальны, в наиболее свободно обдуваемых частях поверхности — максимальны. Суммирование полученных локальных коэффициентов по поверхности шара дает средний коэффициент массообмена, который удовлетворительно совпадает с расчетом по формуле (IV. 71) при Кеэ = 300 и 3000. Имеющиеся данные по локальным коэффициентам тепло- и массообмена можно использовать при рассмотрении процессов горения в слое топлива, экзотермической реакции на твердом катализаторе с большим тепловым эффектом. Области конта11-тов между зернами с пониженными значениями коэффициентов переноса представляют собой очаги процесса на верхнем температурном режиме и, по-видимому, повышают устойчивость процесса в плотном зернистом слое. Неравномерность локальных коэффициентов переноса должна влиять на процессы сорбции, [c.166]

    Требования по качеству масел для двухтактных бензиновых двигателей связаны со спецификой применения масел и конструкцией двигателей. Необходимо, чтобы небольшое количество масла, поступающего в цилиндр в виде тумана, во время горения топлива достаточно хорошо смазывало все поверхности и смывало с них загрязнения, не засоряло свечи и окна цилиндров и не допускало прихватывания поршней. Для поддержания чистоты двигателя применяются высокоэффективные моющие присадки - детергенты, не содержащие металлов, которые при сгорании не образуют (либо образуют малое количество) золы. Зола и нагар способствуют ускорению износа двигателя и вызывают преждевременное (калильное) зажигание preignition). Масла должны обладать высокими антикоррозионными свойствами, особенно при применении в двигателях морских моторных лодок (с учетом влияния соленой морской воды). Кроме того, масло в течение продолжительного времени должно хорошо защищать от коррозии в режиме простоя двигателя. В некоторых случаях к маслам предъявляются дополнительные требования -смешиваемость с бензином и сохранение смазывающих свойств в условиях низких температур. [c.117]

    Разработка эффективной технологии сжигания жидких отходов сдерживается отсутствием данных, описывающих реакции горения многих веществ, сбрасываемых в виде отходов, что не позволяет подобрать оптимальные условия процесса. Наиболее важные параметры — температура, длительность пребывания отходов в тоиочпой камере и количество подаваемого воздуха. [c.135]

    Экспериментальные исследования [156] показали, что в турбулентных пламенах наблюдается как нормальное распространение пламени, так и самовоспламенение объемов свежей смеси. С учетом этого процесс турбулентного горения при достаточно высокой интенсивности турбулентного потока можно представить в виде двух одновременно протекающих и конкурирующих между собой процессов — нормального распространения пламени и самовоспламенения объемов свежей смеси [5]. Поскольку самовоспламенение смеси в данном случае происходит в условиях интенсивной диффузии в объем свежей смеси активных центров (атомов, свободных радикалов, ионов) и, что особенно важно, при интенсивном воздействии на объем свежей смеси излучения окр ужающего пламени, период задержки самовоспламенения мал и стремится к постоянной величине. В этих условиях параметром, существенно влияющим на взрывное горение, является температура самовоспламенения смеси Т  [c.139]

    Некоторые детали горения различаются в разных типах пламени. Обычно рассматривают два вида пламени желтое и голубое. Иногда выделяют зеленое пламя. В случаях и голубого и зеленого пламени цвет приписывают излучению некоторых радикалов, существующих в реакционной зоне. Светящееся желтое пламя объясняется свечением раскаленных угольных частиц, получающихся в результате процессов крекинга больших молекул в меньшие фрагменты. Различия между обоими видами пламени были обрисованы Хасламом и Расселом (Haslam and Russell [73]) и более полно Ромпом [74]. Желтое пламя дает непрерывный спектр, а голубое — полосатый. Один тип может быть превращен в другой изменением условий горения. Каждое топливо при неизменных условиях дает только один тип пламени. [c.475]

    Другие процессы. Сажу, используемую в качестве пигмента (ламповая, пламенная, копоть), получают также неполным сжиганием некоторых видов жидкого или твердого растительного или минерального сырья. Горение проходит в условиях умеренной тур- булеитности, с наддувом воздуха для окисления образованной сажи. Угольные взвеси собирают в осадительных камерах большого объема с перегородками. Самые крупные частицы оседают в первых камерах, а самые мелкие — в последних. Существует много типов таких установок с различными конструкциями огневых и осадительных камер с перегородками. [c.125]

    Сгорание бензо-воздушных смесей в двигателях представляет собой крайне сложный химический процесс, развивающийся в условиях быстро изменяющихся температур, давлений и концентраций реагирующих веществ. Реакции горения обычно протекают в виде нескольких последовательных стадий и ряда конкурирующих между собой параллел-ьных процессов. Изучение химических пре- [c.53]

    Чрезвычайно показательно, что кинетическая модель реакции и описанное поведение системы в области атмосферных давлений и температур 1000 К в реальных условиях в значительной мере определяет гидродинамический механизм воспламенения и горения газа в детонационных волнах. Многочисленные экспериментальные наблюдения и теоретический анализ течения газа в зоне химической реакции, инициируемой нагревом газа за ударным фронтом плоской детонационной волны, показывают, что одномерная и стационарная схема течения в такой зоне неустойчива. На практике реализуется локально нестационарная и многофронтовая модель детонационного горения 1119, 1521, в которой термическое состояние ударно нагретого газа варьируется в достаточно широких пределах — от 900 до 3000 К вместо 1800 К, характерных для стационарной детонационной волны Чепмена — Жуге. Это изменение температуры обычно представляется в виде непрерывного распределения вдоль искривленного [c.305]

    Ц1ожарная защита открытых технологических установок зависит от вида технологического оборудования и условий развития возможных пожаров. Развитие пожаров на каждом из участков установки имеет свои особенности. Условия развития пожара могут быть охарактеризованы следующими основными параметрами линейной скоростью распространения очага горения по поверхности  [c.12]

    Излучение факела пламени определяется его структурой, которая зависит от вида горящего материала и условий протекания процесса горения при пожаре. При горении газа и жидкостей образуются светящаяся и несветящаяся части пламени. Светящаяся часть пламени содержит трехатомные газы и раскаленные частицы сажи. Свечение пламени увеличивается за счет содержания частиц сажи (излучение трехатомных газов имеет второстепенное значение). Несветящаяся часть пламени содержит в основном СО2, Н2О, N202. [c.24]

    Необходимость рсшюпия более общей задачи явствует, в частности, из следующих соображений. В приведенном выше решении задачи о горении водорода, например, пе славился вопрос о судьбе радикалов HOj принималось, что, по крайней мере, при не очень высоких температурах и давлениях эти радикалы погибают иа стенках реакционного сосуда. Однако вследствие большой скорости процессов взаимодействия Н с HOj нужно полагать, что с диффузией радикалов ГГО к стенкам и их гетерогенной гибелью могут успешно конкурировать гомогенные процессы. Поэтому при наличии этих процессов условие второго прелела [в пренебрежении гибелью радикалов HOj на степках и в процессе (20)1 перепишется в виде [c.219]

    Здесь Н — эффективная теплота пспарения, включающая теплоту испарения топлива плюс тепло, необходимое для нагрева единицы массы испаряющегося горючего. Решение представлено в таком виде, при котором наблюдаются предельные переходы как к чистому испарению а = О, (уравнение (12) сводится к уравнению (10) прп условии Р1Д = Х,/ср1), так и к горению, когда Хщ = 0. Последнее предположенне верно, когда фронт пламени узкий л все горючее в нем превращается. В более простых моделях, удобных для анализа [23, 36], предполагается, что Н = Ь. При исследовании диффузионного горения многокомпонентной капли [38] используются в основном те же подходы, что и для однокомпонентной, несмотря на некоторое различие в методах анализа. [c.72]

    В последние годы для моделирования процесса регенерации на уровне зерна активно разрабатывается диффузионная модель [150, 151, 153]. Уравнения материального баланса данной модели учитывают свободную диффузию кислорода в порах зерна одновременно протекают химические реакции, в которых кислород расходуется. Из физических соображений диффузионная модель представляется более строгой в сравнении с моделью послойного горения. Для диффузии кислорода нет никаких преград в виде некоторым образом локализованной узкой реакционной зоны. Поэтому нет необходимости привлекать дополнительные предположения для вывода уравнения движения зоны рюакции. Несмотря иа более простую постановку задачи, диффузионная модель включает в себя модель послойного горения как предельный случай. Действительно, всегда можно выбрать такие условия, что выжиг кокса будет проходить практически послойно. Именно это и было показано в работе [153]. [c.71]

    Результаты расчетов представлены в виде кривых на рис. 4.1. Границы кинетической области, которая расположена выше кривых, приведены в координатах входная температура-начальная концентрация кислорода Как видно из рисунка, выжиг кокса в кинетической области может быть реализован не для любых условий. Например, при начальной закоксованности 3% (масс.) и температурах ни ке 500 °С (при = = 10% (масс.) и Тг< 510 °С) регенерация катализатора будет проходить в области внутренней диффузии даже в атмосфере чистого кислорода. Аналогичная ситуация возникает при низких концентрациях кислорода. Так, при q = 3% (масс.) и концентрации кислорода ниже 6,5% (об.) (при 10% масс, и X <9% об.) даже при температурах 750 °С кинетические условия выжига кокса реализовать невозможно. Этот результат согласуется с выводом Ч. Саттерфилда [75] скорость горения прямо пропорциональна концентрации кислорода в окислительном газе, но так как реакция лимитируется диффузией, то влияние температуры на скорость реакции незначительно . Иногда в литературе медленную скорость удаления кокса, например, для условий qt = 6% (масс.), х = 2% (об.) и 7 = 487 °С [153] объясняют протеканием процесса исключительно в кинетической области. Однако из того факта, что скорость выжига мала, вовсе не следует, что процесс лимитируется кинетикой. Как видно из рис. 4.1, единственно возможная область протекания процесса при таких условиях-внутридиффузионная или переходная. [c.77]

    Анализ изменения температуры во времени в разных точках по длине адиабатического слоя показывает, что такое изменение имеет характерный вид 5-функции, причем максимум температуры по направлению к выходу из регенератора возрастает. Тогда при определенных условиях в центральной части адиабатического слоя в нестационарном режиме горения кокса могут возникнуть значительные динамические тепловые забросы. Такой результат и был получен в работах [146, 161], где показано, что помимо начальных условий на максимум температуры в слое сильно влияет скорость подачи газового потока. При уменьшении расхода газа (увеличении времени контакта) температура слоя из-за динамических забросов может превзойти максимальное асимптотическое значение, соответствуюшее величинам Т , х° и Механизм появления забросов, по-видимому, следующий в область высоких температур из частично регенерированных участков слоя катализатора поступает реакционная смесь с достаточно высоким содержанием кислорода, результатом чего является ускорение химической реакции и увеличение тепловыделения. Выделяющееся в горячей зоне тепло вызывает рост температурного максимума до тех пор, пока тепловые потери на нагрев соседних участков не скомпенсируют тепловыделение. По-видимому, можно реализовать такие условия выжига кокса, при которых в слое появятся так называемые горячие пятна и в результате произойдет спекание катализатора. [c.87]

    Эта характеристика чрезвычаххпо существенна для жидких видов топлива, так как хорошая карбюрация и полнота сгорания топлив обусловлены их однородностью. Чем однороднее горючее, тем (при прочих равных условиях) оно эффективнее в условиях нормального горения. [c.9]

    Одним практическим следствием такой зависимости является то, что при увеличении размеров камеры сгорания или печи в условиях несветяшегося горения можно ожидать некоторого увеличения плотности радиационного потока на стенке. Кроме того, области горячего газа, находящиеся далеко от степки, могут радиационно охлаждаться холодной стенкой вследствие того, что оптическая глубина в крыльях полос невелика и имеется заметное увеличение ш/ в горячих областях. В отличие от этого в условиях горения с болыпим количеством сажи при увеличении размеров плотность теплового потока на стенку может падать, а области пламени, удаленные от стенки, не могут видеть стенку и, таким образом, не подвержены радиационному охлаждению. Это последнее обстоятельство может привести к увеличению образования загрязняющего компонента — окиси азота. [c.510]

    Вычисленные значения интенсивности выделения тепла в зоне горения шарика в ряде случаев превышают теплонапряженность топочного пространства промышленных котлов [12]. Естественно, что в этих условиях можно ожидать резкого повышения температуры в зоне горения и быстрого спекания или разрушения частиц катализатора. В расчетах не учтены внешнедиффузионные факторы, которые могут существенно понизить -концентрацию кислорода около устья поры и теплонапряженность зоны горения. Однако в работе [11] было показано, что селективное спекание катализатора в зоне горения возможно даже при регенерации его в муфеле, когда внешнедиффуэионное торможение ввиду отсутствия вынужденного потока воздуха должно сказываться в максимальной степени. Измененная зона шарика катализатора имеет вид четко очерченного сферического кольца. Аналогичные кольца обнаружены и в частицах катализатора, отобранного с промышленной установки. [c.108]

    Сгорание бензовоздушных смесей в двигателях представляет собой крайне сложный химический процесс, развивающийся в условиях быстро изменяющихся температур, давлений и концентраций реагирующих веществ. Реакции горения обычно протекают в виде нескольких последовательных стадий и ряда конкурирующих между собой параллельных процессов. Изучение химических превращений в процессе сгорания такой сложной смеси углеводородов, какой является бензин, связано с большими трудностями. Многообразие протекающих реакций может быть продемонстрировано на примере простейшего углеводорода — метана. Акад. Н. Н. Семенов считает, что высокотемпературное окисление метана идет по следующей радикальноцепной схеме [2]  [c.151]


Смотреть страницы где упоминается термин Горение виды и условия: [c.97]    [c.143]    [c.482]    [c.508]    [c.111]    [c.72]    [c.247]    [c.141]    [c.237]   
Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Горение условия



© 2025 chem21.info Реклама на сайте