Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочная коррозия металлов и сплавов

    Серебро обладает высокой электропроводностью, отражательной способностью и химической устойчивостью, особенно при работе в щелочных растворах и большинстве органических кислот. Поэтому покрытие серебром получило применение главным образом для улучшения электропроводящих свойств поверхности токонесущих деталей в электротехнической и радиоэлектронной отраслях промышленности, для сообщения поверхности высоких оптических свойств (свежеполированное серебро имеет коэффициент отражения света около 99%), для защиты химической аппаратуры и приборов от коррозионного разрушения под действием щелочей и орга нических кислот, а также для декоративной цели с последующим оксидированием. Серебром чаще всего покрывают изделия из меди и ее сплавов. Для защиты от коррозии черных металлов серебрение не применяется. [c.422]


    Щелочная коррозия металлов и сплавов [c.145]

    Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]

    Щелочность воды, используемой в парогенераторах, должна находиться в определенных пределах. Наличие в воде гидроксил-ионов обеспечивает пассивацию сплавов металлов, применяемых в парогенераторах. В то же время при очень большой щелочности, высоких температурах и механических напряжениях возникает особый вид коррозии металла парогенераторов. [c.344]

    Домашняя подготовка. Общая характеристика металлов. Физические и химические свойства металлов. Ряд напряжений. Коррозия металлов. Добывание металлов из руд. Сплавы. Щелочные металлы. Калий, его физические и химические свойства. Соли калия. Калийные удобрения. Месторождения калийных удобрений в СССР. Металлы, применяемые в качестве микроудобрений. [c.157]

    Местная коррозия обычно является следствием образования гетерогенных смешанных электродов, причем изменение кривых местная плотность тока — потенциал мол<ет иметь причины, связанные с особенностями и материала и окружающей среды. При наличии различных металлов (см. рис. 2.7) получается контактный элемент. Местные различия в составе среды ведут к образованию концентрационных элементов. Сюда относится и аэрационный элемент, свойства которого в конечном счете характеризуются различиями величиной pH стабилизирующимися в результате последовательных химических реакций, здесь могут иметь значение ионы хлора и ионы щелочных металлов [21. Такие коррозионные элементы могут иметь весьма различную протяженность. Так, при селективной коррозии многофазных сплавов аноды и катоды могут иметь размер в доли миллиметра. У объектов большой площади, например трубопроводов, размеры таких коррозионных макроэлементов (макропар) могут достигать нескольких километров. Опасность коррозии при образовании элемента решающим образом зависит от отношения площадей катода и анода. Из зависимостей на рис. 2.6, если ввести интегральные сопротивления поляризации [c.58]


    Разрушение покрытий. На стойкость покрытий в условиях эксплуатации оказывают влияние след, процессы деструкция полимера, взаимодействие пигмента и пленкообразующего с окружающей средой, изменение надмолекулярных структур в пленках. Кроме того, долговечность 3. л. п. зависит от природы металла, на к-рый наносят покрытие. Металл и покрытие представляют собой единый комплекс, в к-ром реакции, протекающие на металле, заметно влияют на свойства покрытия. Если коррозия металла сопровождается выделением водорода (что особенно характерно для легких металлов, в первую очередь для магния и его сплавов), то между покрытием и металлом образуются пузыри, вызывающие отслаивание и последующее разрушение покрытия. Нелетучие продукты коррозии, к-рые постепенно накапливаются под пленкой и в порах покрытия, в конечном итоге также вызывают разрушение пленки в местах анодного растворения металла. На катодных участках металлич. поверхности накапливаются гидроксильные группы. Это приводит к отрыву пленки от металла и образованию пузырей, наполненных жидкостью с pH до 13, вызывающей омыление и разрушение покрытий. Щелочное размягчение особенно опасно для пленко-образующих, склонных к омылению, в первую очередь для масляных и алкидных. [c.393]

    Применение олова, его сплавов и соединений. Такие свойства металлического олова, как его большая ковкость и пластичность, низкая температура плавления, небольшая твердость, устойчивость к атмосферной коррозии, очень малая токсичность обусловили его широкое применение. Металлическое олово идет главным образом iUi получение белой жести, т. е. луженого железа, устойчивого к коррозии. Из луженой жести изготовляют консервные банки и листы для кровли.зданий. Лудят жесть погружением в расплавленное олово нли гальваническим осаждением металла из щелочных ванн. Из олова производят оловянную фольгу (станиоль), используемую для конденсаторов, а также для упаковки пищевых продуктов и фармацевтических препаратов. [c.191]

    С практической точки зрения наибольший интерес представляет коррозия металлов в солевых расплавах, контактирующих с воздухом [10, 38, 41, 45, 119, 177, 232, 277—286]. Во многих расплавленных солях кислородсодержащих кислот (карбонатах, сульфатах, фосфатах, нитратах и др.) кислород растворяется без химического взаимодействия с солевой средой [286] и окисление протекает непосредственно с его растворенными частицами, вступающими в контакт с металлической поверхностью. ИменнО этим объясняется коррозия таких металлов, как платина [21, 29, 38, 116, 232, 233, 288, 289], серебро [21, 38, 47, 232, 233, 288, 290, 291] и их сплавы [29, 116, 292] в карбонатных [21, 29, 47, 289—291], щелочных [38, 232, 233] и т. п. расплавах, анионы которых не способны к окислению этих металлов. Как было показано на примере карбонатов [205, 206], коррозия таких металлов практически прекращается, как только исключается доступ кислорода к расплаву. [c.181]

    Серебро сохраняет очень высокую стойкость в растворах гидроокисей щелочных металлов оно стойко также в их расплавах до 700° С. Кислород усиливает коррозию в расплавах едких щелочей, но не ограничивает область применения серебра — оно используется, например, для изготовления насосов (перекачка расплавов едких щелочей). Растворы гидроокиси аммония вызывают коррозию серебра. Сплавы, содержащие 0,1—0,2% никеля, ведут себя лучше, чем чистое серебро. Эти присадки задерживают рекристаллизацию в случае длительных нагрузок при высоких температурах и предотвращают охрупчивание деталей (табл. 8.6). [c.479]

    Кадмий — более дефицитный металл, он дороже цинка, поэтому реже применяется для защиты железа от коррозии. В качестве электроотрицательного электрода его используют в кадмий-нике-левых щелочных аккумуляторах. Определенные количества его потребляются в атомных реакторах в качестве замедлителя реакции. В технике применяются также сплавы кадмия с медью, оловом и свинцом. [c.266]

    Соли хлорноватистой кислоты и щелочных металлов вызывают коррозию медноцинковых сплавов со скоростью от 0,008 до 0,076 см год. [c.190]

    Проведены систематические исследования коррозионного поведения ряда ме таллов и сплавов в среде расплавленных карбонатов и галогенидов щелочных и щелочноземельных металлов. Показано, что в чистых расплавленных солях коррозия металлов имеет электрохимическую природу. Деполяризаторами выступают как компоненты солевого расплава (катионы щелочных и щелочноземельных металлов и комплексные анионы), так и примеси (растворенные газы H i, СЬ, О2). Показано, что если коррозия не осложняется образованием на поверхности металлов пленки твердых продуктов, то скорость ее (ток коррозии) контролируется диффузией ионов окислителя и продуктов коррозии в расплаве, и стационарный потенциал является важной количественной характеристикой процесса. [c.126]


    Ингибиторы коррозии металлов (расположенных в ряду напряжений от магния до серебра включительно) и их сплавов в кислых, щелочных и нейтральных средах (до 275° С) [862], Эффективные ингибиторы атмосферной коррозии. [c.35]

    Соотношение (3.28) справедливо только в том случае, если жидкий металл смачивает поверхность, так что пе существует поверхностной пленки, действующей как тепловой барьер. С щелочными металлами обычно не возникает никаких затруднений, так как они очень хорошо смачивают поверхность конструкционных металлов и сплавов но свинец, висмут и ртуть очень плохо смачивают поверхности низколегированных сплавов и нержавеющей стали. При плохой смачиваемости поверхности коэффициент теплоотдачи может уменьшиться в 10 раз. Чтобы устранить этот недостаток, в ртуть, например, добавляют небольшое количество магния. Добавление магния в слишком большом количестве может вызвать коррозию и ухудшить массообмен. [c.64]

    Основная масса никеля в промышленности расходуется на производство сплавов для электротехники инвара, платинита, нихрома, никелина. Никелевые сплавы применяют также в химической и авиационной промышленности, в судостроении. Как легирующий металл никель сообщает сталям вязкость, механическую прочность, жаростойкость, устойчивость к коррозии. Хромоникелевые стали [1—4% (мае.) никеля и 0,5—2% (мае.) хрома идут на изготовление брони, бронебойных снарядов, артиллерийских орудий. Никель используют в щелочных аккумуляторах. Давно известен никель как катализатор. [c.431]

    Коррозия с водородной деполяризацией характерна для металлов. имеющих электродный потенциал отрицательнее, чем водород, и протекает, как правило, в кислых средах. Однако ряд активных металлов. например, магний и его сплавы, корродируют таким же образом в нейтральных и щелочных средах за счет восстановления водорода из молекул воды по реакции [c.35]

    Отметим, что химическая активность зависит от состояния, в котором компоненты участвуют в реакции. Каленберг [139] обратил внимание на то, что аммиак и химически чистый хлористый водород не реагируют с заметной скоростью, в то время как добавление бензола вызывает немедленное взаимодействие. На основании этого исследования предполагают, что бензол облегчает образование стойкого коллоидального хлорида аммония, который каталитически ускоряет соединение хлористого водорода и аммиака. Френд [103] применил эту теорию автокаталитического действия для объяснения способности сплавов участвовать в качестве промоторов или ингибиторов (Ag-.Си-промотор N1—Зп — ингибитор) в процессах коррозии железных сплавов и цветных металлов. Тот факт, что добавление щелочных карбонатов к воде не только не препятствует коррозии, но, наоборот, способствует более быстрой [c.371]

    Е. В. Сивакова, А. С. Строев. ЖАРОСТОЙКИЕ СПЛАВЫ - сплавы, отличающиеся жаростойкостью. К Ж. с. относятся никель-хромистые и железохромоникелевые сплавы (табл., рис.), обладаю-шде высоким сопротивлением газовой коррозии (см. Коррозия металлов) при высокой т-ре (800—1100° С) в среде воздуха и в др. газовых средах. Стойкость против газовой коррозии зависит от хим. состава сплава, т-ры, состава газовой среды, срока эксплуатации, величины мех. напряжений и цикличности нагрузки. Газовая среда, образующаяся при сгорании грубого нефтяного топлива или особо тяжелых топлив (мазута и т. п.), содержащих повышенное количество серы, ванадия, солей щелочных и щелочноземельных метал лов и др., резко ухудшает коррозионную стойкость сплавов, уменьшая срок эксплуатации изделий из них. В очищенном топливе (напр., керосине, бензине) коррозия проявляется в меньшей степени. Однако с повышением рабочей т-ры или увеличением содержания примеси солей морской атмосферы она может быть катастрофической. Сплавы с большим содержанием хрома или сплавы, подвергнутые спец. легированию, а также изделия с диффузионными покрытиями, созданными в процессе алитирования, хромоалитирова-ния или алюмосилицирования, отличаются более высокой стойкостью против газовой коррозии. Жаростой [c.427]

    Трудно дать общую рекомендацию о том, какой метод и когда следует применять. Можно лишь отметить, что чаще других используется химическое травление. Практика показала, что наилучшим— наиболее универсальным и надежным методом удаления продуктов коррозии со сплавов на основе железа (и даже для осветления поверхности микрошлифов) является обработка металла ингибированными кислотами. Вместе с тем отмечается [18], что для точного удаления продуктов коррозии со сплавов на железной основе при незначительной потере металла хорошие результаты дает описанная выше катодная обработка в щелочном растворе. Имеются также сведения [21], что катодное травление в растворе серной кислоты с ингибитором дает хорошие результаты при снятии продуктов коррозии с нержавеющ,ей стали после коррозии в воде при повышенных температурах и давлении. По этим же данным катодное травление в 2,5%-ном растворе Н2504 с добавкой 6 г/л уротропина при комнатной температуре предпочтительнее при снятии продуктов коррозии с 5%-ной хромистой стали по сравнению с травлением в щелочном растворе. [c.25]

    Исследовано электрохимическое поведение сплавов титана с алюминием в растворах карбонатов щелочных металлов. Обнаружено, что введение в указанные растворы галогенид-ионов вызывает резкое понижение коррозионной стойкости титан-алюминиевых сплавов вследствие питтин-гообразования. Введение в растворы карбонатов анионов кислородсодержащих кислот не оказывает заметного влияния ни на потенциал коррозии, ни на критическую плотность тока. [c.27]

    Кривая в характерна для благород ных металлов (золото, платина), стойких в кислых, нейтральных и щелочных средах. Температура заметно влияет на ход кривых коррозия — pH. С повышением температуры скорость коррозии возрастает. Здесь изложены лишь общие закономерности влияния pH, от которых имеются различные отступления. Скорость коррозии металлов в значительной мере уменьшается или совсем прекращается, если в состав коррозионной среды ввести даже в малых количествах окислители. Так, например, хроматы при некоторых условиях сильно уменьшают коррозию стали или алюминиевых сплавов в воде. В этом случае хромат выступает как пассиватор и относится к окислительным анодным замедлителям коррозии Такое же воздействие оказывают также нитраты и нитриты в соответствующих условиях. Наряду с этим анодными замедлителями (ингибиторами) коррозии являются также вещества неокислительного типа, например едкий натр, углекислый натрий, фосфаты или соли бензойной кислоты — для черных металлов, жидкое стекло — для черных металлов и алюминиевых сплавов. Тормозящее действие этих веществ состоит в образовании на [c.42]

    Тонкие листы можно сваривать с отбортовкой без присадочного металла. При сварке толстых листов для обеспечения провара производится скос кромок и применяется присадочный пруток. Кромки изделия перед сваркой должны быть обезжирены растворителем и очищены от слоя окиси химическим или механическим способом. Для закрепления кромок, особенно ири сварке труб, часто применяют предварительную прихватку. Сварку листового металла и толстых листов следует производить с предварительным подогревом (до 150—250° С). Пламя должно быть нормальным или с небольпшм избытком ацетилена. В качестве присадочного металла можно примеиять чистый алюминий или его сплавы, содержащие 4,5—6% кремния флюс — хлориды щелочных металлов — и некоторые фтористые соединения. Остатки флюса после сварки необходимо удалять, так как опи вызывают коррозию металла для этого шов тщательно обрабатывают кислотой (например, 5% НКОд в течепие 10 мин при 60—80° С) и затем промывают в воде. Для улз чшения механических свойств и структуры металла шва его целесообразно подвергнуть после сварки отжигу горелкой и проковке. [c.594]

    Из табл. 9 видно, что все обычно применяемые металлы вызывают сильную коррозию магниевого сплава в электролитах с большой концентрацией С К. Кадмиевое или цинковое покрытие катодных металлов, например стали, в 10 раз снижает гальваническую коррозию. Уменьшение электропроводности, например замена 3 /о раствора N301 водопроводной водой, дает еще большее снижение скорости коррозии. При таких условиях, когда продукты коррозии не удаляются непрерывно, или при высокой плотности катодного тока, когда окружающая среда может стать сильно щелочной, как магний, так и соприкасающийся с ним металл, окислы которого амфотерны (например, алюминий), могут подвергаться сильной коррозии. [c.149]

    Применение металлов подгруппы цинка и их соединений. Большое количество цинка и кадмия расходуется на покрытие изделий из черных металлов в целях защиты их от коррозии. Для этого применяют электрохимические и химические методы. Эти покрытия анодные. Цинк применяется в производстве цинково-угольных элементов (Лекланше), сплавов с медью (латунь, томпак) и как протектор. Кадмий — один из компонентов легкоплавких сплавов (сплавы Вуда, Розе и др.). Его используют как поглотитель нейтронов в регулировании работы ядерных реакторов. Из кадмия готовят электроды щелочных аккумуляторов. Металлическая ртуть применяется для изготовления различных приборов вакуумных манометров и насосов, выпрямителей, ртутных кварцевых ламп, барометров, термометров и т. д. Очищают ртуть фильтрованием через бумагу или замшу и, пропуская ее в виде мелких капель через колонку с раствором нитрата ртути (I), подкисленным азотной кислотой, а также перегоняя в вакууме. [c.364]


Смотреть страницы где упоминается термин Щелочная коррозия металлов и сплавов: [c.78]    [c.498]    [c.557]    [c.741]    [c.396]    [c.195]    [c.53]    [c.364]    [c.58]    [c.218]    [c.204]    [c.151]    [c.351]    [c.129]    [c.170]    [c.25]    [c.26]   
Смотреть главы в:

Защита промышленных зданий и сооружений от коррозии в химических производствах -> Щелочная коррозия металлов и сплавов




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии

Металлы сплавы

Сплавы и металлы металлов

Щелочная коррозия



© 2024 chem21.info Реклама на сайте